首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Leetcode -1721.交换链表中的节点 -2058.找出临界点之间的最小和最大距离】

给你一个链表 head ,返回一个长度为 2 的数组[minDistance, maxDistance] ,其中 minDistance 是任意两个不同临界点之间的最小距离,maxDistance 是任意两个不同临界点之间的最大距离...[5, 3, 1, 2, 5, 1, 2]:第六个节点是一个局部极小值点,因为 1 比 5 和 2 小。 第五个节点和第六个节点之间距离最小。minDistance = 6 - 5 = 1 。...第三个节点和第六个节点之间距离最大。maxDistance = 6 - 3 = 3 。...[1, 3, 2, 2, 3, 2, 2, 2, 7]:第五个节点是一个局部极大值点,因为 3 比 2 和 2 大。 最小和最大距离都存在于第二个节点和第五个节点之间。...2,即返回的数组中的最小距离和最大距离都是 -1 ;如果大于2,最大距离即是数组中的最后一个减去第一个,即最大减最小;最小距离需要遍历数组,找到相邻的元素中差值最小的值; int* nodesBetweenCriticalPoints

8510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    找出临界点之间的最小和最大距离(链表)

    题目 链表中的 临界点 定义为一个 局部极大值点 或 局部极小值点 。 如果当前节点的值 严格大于 前一个节点和后一个节点,那么这个节点就是一个 局部极大值点 。...如果当前节点的值 严格小于 前一个节点和后一个节点,那么这个节点就是一个 局部极小值点 。 注意:节点只有在同时存在前一个节点和后一个节点的情况下,才能成为一个 局部极大值点 / 极小值点 。...给你一个链表 head ,返回一个长度为 2 的数组 [minDistance, maxDistance] ,其中 minDistance 是任意两个不同临界点之间的最小距离,maxDistance 是任意两个不同临界点之间的最大距离...第五个节点和第六个节点之间距离最小。minDistance = 6 - 5 = 1 。 第三个节点和第六个节点之间距离最大。maxDistance = 6 - 3 = 3 。...- [1,3,2,2,3,2,2,2,7]:第五个节点是一个局部极大值点,因为 3 比 2 和 2 大。 最小和最大距离都存在于第二个节点和第五个节点之间。

    72820

    智能方法求解-圆环内传感器节点最大最小距离分布

    文章分类在最优化算法: 最优化算法(7)---《智能方法求解-圆环内传感器节点最大最小距离分布》 智能方法求解-圆环内传感器节点最大最小距离分布 0.问题重述 假设有N...=20个传感器节点随机分布在半径为R=1公里的圆区域内(如图1所示),现要求:通过调整各传感器的位置,使其稀疏分布于外环半径为R,内环半径为0.8R的圆环区域内(即保证圆环内的邻近传感器节点之间的距离尽可能地远...,以最大化邻近节点之间的距离,从而减轻电磁互扰。...图7 圆环区域内传感器节点位置优化后MATLAB输出结果图 3.实验结论 通过以上步骤,使用模拟退火算法和遗传算法来实现节点在圆环区域内的稀疏分布,代码实现了节点位置的优化,确保其在圆环区域内最大化最小距离...4.总结 通过采用传统方法和智能方法求解圆环内传感器节点最大最小距离分布问题,可以观察到,传统方法求出的结果相比于智能方法更优。

    5710

    最优化方法求解-圆环内传感器节点最大最小距离分布

    文章分类在最优化算法: 最优化算法(6)---《最优化方法求解-圆环内传感器节点最大最小距离分布》 最优化方法求解-圆环内传感器节点最大最小距离分布 1.问题 假设有N=20个传感器节点随机分布在半径为...R=1公里的圆区域内(如图1所示),现要求:通过调整各传感器的位置,使其稀疏分布于外环半径为R,内环半径为0.8R的圆环区域内(即保证圆环内的邻近传感器节点之间的距离尽可能地远,以减轻电磁互扰)。...为了量化节点之间的相对位置关系,引入了指标集合 具体地说,该模型的目标是实现传感器之间的最大间距,同时满足特定的约束条件,以确保整个网络的有效性和稳定性。...由圆环区域内传感器节点位置优化后MATLAB输出结果图可知,优化后的传感器最小距离为0.3359。...完整的文档、Matlab代码放在了下面链接中,需要自取: 最优化方法求解-圆环内传感器节点最大最小距离分布 如果获取上述方式获取不到资源,请在评论区发表自己的邮箱地址(私信不回复),看到后会尽快发送给你

    10510

    二叉搜索树节点最小距离」

    二叉搜索树节点最小距离 题目链接 https://leetcode-cn.com/problems/minimum-distance-between-bst-nodes/ 也可以点击「阅读原文」直达题目链接...题目描述 给你一个二叉搜索树的根节点 root,返回 树中任意两不同节点值之间的最小差值。 示例 1: ? 输入:root = [4, 2, 6, 1, 3] 输出:1 示例 2: ?...输入:root = [1, 0, 48, null, null, 12, 49] 输出:1 提示: 树中节点数目在范围 [2, 100] 内 解题思路 这道题主要是考察二叉搜索树的性质,二叉搜索树的中序遍历得到的结果是升序排列的...要得到树中任意两个不同节点值之间的最小差值,那么只需要比较中序遍历得到的序列的相邻元素,求得最小值就可以了。...这道题看上去有点无从下手的感觉,但是碰到二叉搜索树,就一定要想到的中序遍历是有序的,这几乎是碰到二叉搜索树的必考点。

    43820

    如何计算经纬度之间的距离_根据经纬度算距离

    大家好,又见面了,我是你们的朋友全栈君 用php计算两个指定的经纬度地点之间的距离,代码: /** *求两个已知经纬度之间的距离,单位为米 *@param lng1,lng2 经度 *@param lat1...,lat2 纬度 *@return float 距离,单位米 *@edit www.jbxue.com **/ function getdistance(lng1,lat1,lng2,lat2){ /...> 举例,“上海市延安西路2055弄”到“上海市静安寺”的距离: 上海市延安西路2055弄 经纬度:31.2014966,121.40233369999998 上海市静安寺 经纬度:31.22323799999999,121.44552099999998...几乎接近真实的距离了,看来用php计算两个经纬度地点之间的距离,还是靠谱的,呵呵。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。...如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    4.6K40

    使用OpenCV测量图像中物体之间的距离

    已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...我们首先获取(排序后的)最小旋转边界框坐标,并分别计算四个顶点之间的中点(第10-15行)。 然后计算中点之间的欧氏距离,给出我们的“像素/尺寸”比例,来确定一英寸为多少像素宽度。...最后,我们将refObj实例化为一个3元组,包括: 物体对象的最小旋转矩形对象box 参考对象的质心。 像素/宽度比例,我们将用其来结合物体之间的像素距离来确定物体之间的实际距离。...然后,第12行计算参考位置和对象位置之间的欧式距离,然后除以“像素/度量”,得到两个对象之间的实际距离(以英寸为单位)。然后在图像上标识出计算的距离(第13-15行)。

    2K30

    NLP笔记:浅谈字符串之间的距离

    汉明距离 汉明距离(Hamming Distance)算是计算文本相似度的最简单的方式,他考察的是等长的字符串之间的距离,其具体定义就是两字符串之间不相同字符的个数。...4. jaccard距离 在大多数情况下,编辑距离事实上足够用于比较字符串之间的相似度了,但是,编辑距离还是存在一定的缺陷的,一个典型的例子就是它依赖于顺序,这就导致一些语义相同但是顺序不同的文本就会遭到误判...,针对这样的数据,jaccard距离相对而言会是一个更好的判断方法,他是顺序无关的,只考虑两个字符串之间的token重合率。...,那么bleu、rouge等指标也可以用于评估两个字符串之间的距离。...edit distance 将s1变换为s2所需要的最小编辑数目 O (

    1.5K40

    程序员之间的距离是怎么拉开的

    程序员之间的距离是怎么拉开的 农历新年假期结束,很多朋友今天开工,这里祝大家开工大吉,新年事业步步高升,更进步一步的逼近梦想。 第一篇就从程序员人个精进开始吧。...更关键的是8小时自由时间,其中包括了时常通勤,吃喝拉撒,端茶倒水,发呆偷懒,阅读上网等。如果能将这八小时来好好利用起来,人与人之前的距离,在毕业一两年之内就可以看到比较明显的差距。...对待编码外的杂事 随着工作年限的增长,你会发现你专注写编码的时间会越来越少,总有各种各样的问题会打断你,使你处在一个不断的切换工作场景,工作上下文的环境中,很难有持续的大片的时间来完成一件事。...从每一次的培训、评审、交流、沟通中获取到自己需要掌握的东西,这也是提升代码之外软技能一个很好的途径,要以很好的锻炼自身的沟通能力、协作能力、理解分析能力。...这些都不是一蹴而就的,都需要长期的积累、练习才能很好的掌握,而我们不应该拒绝每一次的成长机会。

    66420

    使用OpenCV测量图像中物体之间的距离

    已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...我们首先获取(排序后的)最小旋转边界框坐标,并分别计算四个顶点之间的中点(第10-15行)。 然后计算中点之间的欧氏距离,给出我们的“像素/尺寸”比例,来确定一英寸为多少像素宽度。...最后,我们将refObj实例化为一个3元组,包括: 物体对象的最小旋转矩形对象box 参考对象的质心。 像素/宽度比例,我们将用其来结合物体之间的像素距离来确定物体之间的实际距离。...然后,第12行计算参考位置和对象位置之间的欧式距离,然后除以“像素/度量”,得到两个对象之间的实际距离(以英寸为单位)。然后在图像上标识出计算的距离(第13-15行)。

    5K40
    领券