首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Hermite插值

Hermite插值是一种数学方法,用于通过已知的数据点集合构造一个多项式,该多项式不仅通过这些点,而且在这些点上的导数也已知。这种插值方法在数值分析和工程领域中非常有用,特别是在需要平滑且连续变化的函数的场合。

Hermite插值的基本概念

  1. 定义: Hermite插值是一种通过n+1n+1个点(x0,y0),(x1,y1),…,(xn,yn)(x0​,y0​),(x1​,y1​),…,(xn​,yn​)以及这些点的导数值y0′,y1′,…,yn′y0′​,y1′​,…,yn′​来构造一个多项式H(x)H(x)的方法,使得:
    • H(xi)=yiH(xi​)=yi​,对于所有i=0,1,…,ni=0,1,…,n。
    • H′(xi)=yi′H′(xi​)=yi′​,对于所有i=0,1,…,ni=0,1,…,n。
  2. Hermite插值多项式: Hermite插值多项式通常表示为Hn(x)Hn​(x),它是满足上述条件的唯一多项式。
  3. 构造方法: 构造Hermite插值多项式的一种常用方法是使用分叉法(divided differences)或递归关系。另一种方法是直接利用已知点和导数值构建拉格朗日基函数。

Hermite插值的步骤

  1. 确定数据点及其导数: 首先,需要有一组数据点(xi,yi)(xi​,yi​)以及这些点的导数值yi′yi′​。
  2. 选择插值基函数: 可以选择使用Hermite基函数或拉格朗日基函数来构建插值多项式。
  3. 应用插值公式: 根据所选的基函数,应用相应的插值公式来计算多项式的系数。
  4. 验证结果: 最后,验证所得多项式是否确实通过所有给定点,并且在每一点上的导数也符合预期。

注意事项

  • Hermite插值要求每个数据点都提供函数值和导数值,这可能比简单的拉格朗日插值更复杂且计算量更大。
  • 在实际应用中,如果某些点的导数值未知或难以获取,可能需要采用其他策略(如仅使用函数值的插值方法)。

示例和应用场景

  • 示例:假设有三个点(0,0),(1,1),(2,4)(0,0),(1,1),(2,4),且在这些点上的导数分别为0,1,20,1,2。通过Hermite插值,可以构造出一个多项式,该多项式不仅通过这三个点,而且在这些点上的斜率也分别与给定的导数值相匹配。
  • 应用场景:Hermite插值广泛应用于计算机图形学(用于平滑曲线绘制)、数值分析(如求解微分方程的近似解)以及工程领域中的各种模拟和预测任务。

总之,Hermite插值是一种强大而灵活的工具,能够在多个领域中解决复杂的插值问题。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python实现线性、抛物、样条、拉格朗日、牛顿、埃米尔特

公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~今天给大家介绍7种方法:线性、抛物、多项式、样条、拉格朗日、牛顿Hermite,并提供Python...()# 显示图形plt.show()抛物抛物,也称为二次,是一种多项式方法。...')# 添加图例plt.legend()# 显示图形plt.show()艾尔米特Hermite埃尔米特插值是另一类问题,这类在给定的节点处,不但要求多项式的函数值与原函数值相同。...同时还要求在节点处,多项式的一阶直至指定阶的导数值,也与被函数的相应阶导数值相等,这样的称为埃尔米特(Hermite)。...= np.array([0, 1, 2, 3, 4, 5])y = np.array([0, 3, 4, 1, 0, 4])dy = np.array([3, 1, -3, -1, 4,0])# 创建Hermite

1.6K10
  • matlab 出错,MATLAB问题

    若F(x)为多项式,称为多项式(或代数) ;常用的代数方法有:拉格朗日,牛顿。...特别地: (1)已知两个节点时,得线性多项式: (2)已知三个节点时,得抛物多项式: (3)已知n+1个节点时,可得n次拉格朗日多项式。...关于代数: 可以看出,当节点较多时,多项式的次数增高,函数出现振荡,精度变低。因此,为了保证精度,在节点较多时,一般采用分段,但这样在分段点光滑性较差。...Matlab采用的多项式都是分段法。从图形还可以看出,对解析函数,精度高;对有奇点的函数,精度低。多项式对靠近区间中点的部分插精度高,远离中点部分精度低。...Method:(1)nearest 最邻近,(2)linear 双线性,(3)cubic双三次,默认为双线性

    1.2K40

    图像

    ) for ax, interp_method in zip(axes.flat, methods): ax.imshow(im,interpolation=interp_method)#图像...ax.set_title(str(interp_method), size=20) plt.tight_layout() plt.show() 算法:图像是在基于模型框架下,从低分辨率图像生成高分辨率图像的过程...图像常见的算法可以分为两类:自适应和非自适应,如最近邻,双线性,双平方,双立方以及其他高阶方法等,应用于军事雷达图像、卫星遥感图像、天文观测图像、地质勘探数据图像、生物医学切片及显微图像等特殊图像及日常人物景物图像的处理...plt.imshow(X, cmap, norm, aspect, interpolation) X表示图像数据 cmap表示将标量数据映射到色彩图 aspect表示控制轴的纵横比 interpolation表示方法

    70930

    numpy

    一、接口 pad(array, pad_width, mode, **kwargs) 其中,第一个参数是输入数组; 第二个参数是需要pad的,参数输入方式为:((before_1, after_1),..., after_N)),其中(before_1, after_1)表示第1轴两边缘分别填充before_1个和after_1个数值; 第三个参数是pad模式 ‘constant’——表示连续填充相同的,...每个轴可以分别指定填充值,constant_values=(x, y)时前面用x填充,后面用y填充,缺省填充0 ‘edge’——表示用边缘填充 ‘linear_ramp’——表示用边缘递减的方式填充...‘maximum’——表示最大填充 ‘mean’——表示均值填充 ‘median’——表示中位数填充 ‘minimum’——表示最小填充 ‘reflect’——表示对称填充 ‘symmetric...’——表示对称填充 ‘wrap’——表示用原数组后面的填充前面,前面的填充后面 参考:https://blog.csdn.net/zenghaitao0128/article/details/78713663

    66120

    最近邻、双线性、双三次

    双线型内插算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素来共同决定目标图中的一个像素,因此缩放效果比简单的最邻近要好很多。...2.双线性 根据于待求点P最近4个点的像素,计算出P点的像素。...2)一般性 如上图,已知Q12,Q22,Q11,Q21,但是要的点为P点,这就要用双线性值了,首先在x轴方向上,对R1和R2两个点进行,这个很简单,然后根据R1和R2对P点进行,这就是所谓的双线性...首先在 x 方向进行线性,得到: 然后在 y 方向进行线性,得到: 也即点P处像素: 3.双三次 假设源图像A大小为m*n,缩放K倍后的目标图像B的大小为M*N,即K=M/m。...因此,a0X的横坐标权重分别为W(1+u),W(u),W(1-u),W(2-u);ay0的纵坐标权重分别为W(1+v),W(v),W(1-v),W(2-v);B(X,Y)像素为: 对待的像素点(

    1.2K20

    查找

    概要 1.查找算法类似于二分查找,不同的是查找每次从自适应mid处开始查。 2.将这般查找中的求mid索引的公式,low表示左边索引,high表示右边索引。...key就是我们前面说的findval 3.int midIndex = low + (high - low) * (key -arr[low]) / (arr[high] - arr[low]); //索引...1-100的数组 已有数组arr=[1,2,3....,100]; 假如我们需要查找的为1 使用二分查找的话,我们需要多次递归,才能1 使用查找算法 int mid = left + (right...对于数据量较大,关键字分部比较均匀的查找表来说,采用查找,速度较快。 关键子分布不均匀的情况下,该方法不一定比折半查找要好。...代码 public class InsertValueSearch { /// /// 查找算法(需要数组是有序的)

    85710

    【图像处理】详解 最近邻、线性、双线性、双三次「建议收藏」

    —— 一阶法 2.3 双线性 (Bilinear Interpolation) —— 一阶法 2.4 双三次 (Bicubic Interpolation) 三、比较与总结 四、延伸...上例即为一个简易的一维表示,f(x’) 就是一个结果。...---- 2.3 双线性 (Bilinear Interpolation) —— 一阶法 由一维的线性很容易拓展到二维图像的双线性,每次需要要经过三次一阶线性才能获得最终结果...: ---- 2.4 双三次 (Bicubic Interpolation) 又称 立方卷积 / 双立方,在数值分析中,双三次是二维空间中最常用的方法。...一方面,传统方法多为 线性 方法,如最近邻、双线性、双三次等。

    14.9K64

    【数值计算方法】曲线拟合与:Lagrange、Newton及其pythonC实现

    (Interpolation) 指通过已知数据点之间的方法,来估计或推算出在这些数据点之间的数值。可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。...二、 Lagrange和Newton都是常见的多项式方法,用于通过给定的一组数据点来估计在其他点上的函数值。它们之间的主要区别在于多项式的构建方法。...最终的多项式是将所有这些基函数相加得到的。 Lagrange的优点是易于理解和实现,但在数据点较多时可能会导致计算复杂度较高的问题。 Newton使用差商的概念来构建多项式。...它是基于拉格朗日多项式的原理,该多项式通过每个数据点并满足相应的条件。拉格朗日可用于估计数据点之间的,而不仅仅是在给定数据点上进行。...Newton Newton基于差商的概念。通过给定的一组数据点,Newton可以生成一个通过这些点的多项式,从而在给定的数据范围内进行和外推。

    29620

    1.1、文本

    1.1、文本 最基本的数据绑定形式是文本,它使用的是“Mustache”语法 (即双大括号): Message: {{ msg }} 双大括号标签会被替换为相应组件实例中...span 的内容将会被替换为 rawHtml 属性的为纯 HTML——数据绑定将会被忽略。注意,你不能使用 v-html 来拼接组合模板,因为 Vue 不是一个基于字符串的模板引擎。...在 Vue 模板内,JavaScript 表达式可以被使用在如下场景上: 在文本中 (双大括号) 在任何 Vue 指令 (以 v- 开头的特殊属性) 属性的中 1.4.1、仅支持表达式 每个绑定仅支持单一表达式...请只对可信内容使用 HTML ,绝不要将用户提供的内容作为 在单文件组件,scoped 样式将不会作用于 v-html 里的内容,因为 HTML 内容不会被 Vue 的模板编译器解析。...参考: 数据绑定语法 - v-memo 1.5.18、v-memo 期望的绑定类型:any[] 详细信息 缓存一个模板的子树。在元素和组件上都可以使用。

    8.8K20

    matlab中如何求点,MATLAB「建议收藏」

    4.5 就是在已知数据之间计算估计的过程,是一种实用的数值方法,是函数逼近的重要方法。...(3)三次样条(method=’spline’):通过数据点拟合出三次样条曲线,计算给定的点在曲线上的作为结果。...(4)立方(method=’pchip’or’cubic’):通过分段立方Hermite方法计算结果。 选择一种方法时,考虑的因素包括运算时间、占用计算机内存和的光滑程度。...图4-4 一维方法结果比较 4.5.2 二维数据 二维也是常用的运算方法,主要应用于图形图像处理和三维曲线拟合等领域。...图4-5 二维原始数据 图4-6 二维结果 4.5.3 多维 多维包括三维函数interp3和n维函数interpn,其函数的调用方式及方法与一维、二维基本相同。

    3K20
    领券