首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

k均值聚类算法

吴恩达老师-K均值聚类 K均值聚类算法中主要是有两个关键的步骤:簇分配和移动聚类中心。...簇分配 假设有一个样本集合,需要将其分成两个类(簇:cluster,红色和蓝色) 首先随机生成两个聚类中心:红色和蓝色两个点 遍历每个样本绿色的点,求出和两个聚类中心的距离,判断和哪个更接近,则归属于哪个类...(簇) 移动聚类中心 将两个聚类中心(红色和蓝色的叉)移动到同色点的均值处,找到所有红色(蓝色)点的均值 重复上述的步骤:簇分配和移动聚类中心,直到颜色的点不再改变,具体算法过程如下各图所示: image.png...image.png image.png image.png image.png image.png 算法 输入 K值:分成K个簇 训练样本 image.png 簇分配和移动聚类中心...算法特性 基于划分的聚类算法,k值需要预先指定; 欧式距离的平方表示样本和聚类中心之间的距离,以中心或者样本的均值表示类别 算法是迭代算法,不能得到全局最优解 选择不同的初始中心,会得到不同的聚类结果

1.5K10

【聚类算法】K-均值聚类(K-Means)算法

在数据挖掘中,聚类是一个很重要的概念。传统的聚类分析计算方法主要有如下几种:划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法等。其中K-Means算法是划分方法中的一个经典的算法。...一、K-均值聚类(K-Means)概述 1、聚类: “类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。...2、K-Means: K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。...结合最小二乘法和拉格朗日原理,聚类中心为对应类别中各数据点的平均值,同时为了使算法收敛,在迭代的过程中,应使得最终的聚类中心尽可能的不变。...3、K-Means算法流程: 随机选取K个样本作为聚类中心; 计算各样本与各个聚类中心的距离; 将各样本回归于与之距离最近的聚类中心; 求各个类的样本的均值,作为新的聚类中心; 判定:若类中心不再发生变动或者达到迭代次数

6.8K41
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Python实现K均值聚类算法

    K均值(K-Means)算法是一种常用的聚类算法,它将数据集分成K个簇,每个簇的中心点代表该簇的质心,使得每个样本点到所属簇的质心的距离最小化。...在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。 什么是K均值算法?...Clustering') plt.legend() plt.show() 结论 通过本文的介绍,我们了解了K均值聚类算法的基本原理和Python实现方法。...K均值算法是一种简单而有效的聚类算法,适用于各种类型的数据集,并且具有较快的运行速度。通过使用Python的NumPy库,我们可以实现K均值算法,并对数据进行聚类分析。...希望本文能够帮助读者理解K均值聚类算法的基本概念,并能够在实际应用中使用Python实现K均值算法。

    27410

    机器学习-聚类算法-k-均值聚类-python详解

    1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好...另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等 2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,...完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。...python的朋友下一个setuptools工具,安装完成之后,在cmd(windows)下输入easy_install  , 基本K均值算法 ############################...原创文章,转载请注明: 转载自URl-team 本文链接地址: 机器学习-聚类算法-k-均值聚类-python详解 No related posts.

    1.1K30

    spssk均值聚类报告_K均值聚类

    机器学习中的k均值聚类属于无监督学习,所谓k指的是簇类的个数,也即均值向量的个数。...然后每个样本点需要与k个中心向量分别计算欧氏距离,取欧氏距离最小的中心向量作为该样本点的簇类中心,当第一轮迭代完成之后,中心向量需要更新,更新的方法是每个中心向量取前一次迭代所得到各自簇类样本点的均值,...在spss中导入的二维数据如下所示: 点击菜单栏的“分析”,找到“分类”选中“k-均值聚类” 将需要进行聚类的变量选入右侧框中 聚类数由用户设定,方法一般选择“迭代与分类”...以下是通过python编程实现k-均值聚类算法所得结果: 最终得到的聚类中心: [[ 2.6265299 3.10868015] [-2.46154315 2.78737555] [-3.53973889...所谓枚举法,即通过取不同的k值来观察最终的聚类结果,选取最优结果所对应的k作为该均值聚类的最终k值。 肘方法是通过绘制不同的k所对应的样本数据点与各自聚类中心的距离平均值来确定k。

    90420

    【算法】k均值和层次聚类

    在本文中,你将阅读到两种聚类算法——k-均值聚类和层次聚类,机器可以用其来快速理解大型数据集。 K-均值聚类(K-means clustering) 何时使用?...工作方式 该算法可以随机将每个观测值(observation)分配到 k 类中的一类,然后计算每个类的平均。接下来,它重新将每个观测值分配到与其最接近的均值的类别,然后再重新计算其均值。...更加细微的细节: 上面所描述的算法还有一些变体。最初的「种子」聚类可以通过多种方式完成。这里,我们随机将每位运动员分成了一组,然后计算该组的均值。...K-均值聚类的一个明显限制是你必须事先提供预期聚类数量的假设。目前也存在一些用于评估特定聚类的拟合的方法。...在生物学之外,层次聚类也在机器学习和数据挖掘中使用。 重要的是,使用这种方法并不需要像 K-均值聚类那样设定分组的数量。你可以通过给定高度「切割」树型以返回分割成的集群。

    1.5K100

    K-均值(K-means)聚类算法

    K-均值(K-means)聚类算法是一种常用的无监督学习算法,用于将数据集分成 K 个簇(clusters)。...该算法的基本思想是将数据点分为 K 个簇,使得每个数据点所属的簇内部的数据点之间的相似度最大化,而不同簇之间的相似度最小化。 K-均值聚类算法的步骤如下: 1....K-均值聚类算法的优点包括: 1. 简单易实现,计算速度快。 2. 在处理大型数据集时具有较高的效率。 3. 可以应用于大多数数据类型和领域。 K-均值聚类算法的缺点包括: 1....对异常值敏感,可能会影响聚类结果的准确性。 总的来说,K-均值聚类算法是一种简单且高效的聚类算法,适用于许多场景,但在一些特定情况下可能表现不佳。...在使用该算法时,需要根据具体问题和数据集来选择合适的参数和预处理方式,以获得更好的聚类结果。

    9810

    k-均值聚类

    k-均值聚类是一种表示学习算法。k-均值聚类算法将训练集分成k个靠近彼此不同样本聚类。因此我们可以认为该算法提供了k维的one-hot编码向量h以表示输入x。...当x属于聚类i时,有 , 的其他项为零。k-均值聚类提供的one-hot编码也是一种稀疏表示,因为每个输入表示中大部分元素为零。...k-均值聚类初始化k个不同的中心点 ,然后迭代交换两个不同的步骤直到收敛。步骤一,每个训练样本分配到最近的中心点 所代表的的聚类i。...步骤二,每一个中心点 ,更新为聚类i中所有训练样本 的均值。关于聚类的一个问题是,聚类问题本事是病态的。这是说没有单一的标准去度量聚类数据在真实世界中效果如何。...例如,假设我们在包含红色卡车图片、红色汽车图片、灰色卡车图片的数据集上运行两个聚类算法。如果每个聚类算法聚两类,那么可能一个算法将汽车和卡车各聚一类,另一个根据红色和灰色各聚一类。

    1.8K10

    聚类模型--K 均值

    聚类模型--K 均值 0.引入依赖 import numpy as np import matplotlib.pyplot as plt # 这里直接 sklearn 里的数据集 from sklearn.datasets.samples_generator...2.算法实现 # 引入 scipy 库中的距离函数,默认实现是欧式距离 from scipy.spatial.distance import cdist class K_Means(object):... 聚类过程     def fit(self, data):         # 假如没有指定初始质心,就随机选取 data 中的点作为质心         if (self.centroids.shape...选取最近的质心点的类别,作为当前点的分类             c_index = np.argmin(distances, axis=1) # 得到 100x1 的矩阵             # 3.对每一类数据进行均值计算...2, 6]])) plt.figure(figsize=(18, 9)) plotKMeans(x, y, kmeans.centroids, 121, 'Initial State') # 开始聚类

    78830

    Python数据分析笔记:聚类算法之K均值

    下面我们介绍一个最常用的聚类算法:K均值聚类算法(K-Means)。 1、K均值聚类 K-Means算法思想简单,效果却很好,是最有名的聚类算法。...聚类算法的步骤如下: 1:初始化K个样本作为初始聚类中心; 2:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕; 3:分别计算K个类中所有样本的质心,作为新的中心点,完成一轮迭代...因此我们的目标是使用K-Means聚类算法,将他们聚成2类。...3、代码与分析 K-Means算法的Python代码如下: [python] view plaincopy # -*- coding: utf-8 -*- from matplotlib import...由于K-Means毕竟是无监督学习,在很多情况下自然无法与有监督学习的算法进行同样标准的比较。但其不需要监督的特性,广泛应用与社交图谱(如本例)、相似性匹配(如搜索相似的新闻、帖子)等引用场景。

    1.1K100

    spss k均值聚类_K均值法与系统聚类法的异同

    总目录:SPSS学习整理 SPSS实现快速聚类(K-Means/K-均值聚类) 目的 适用情景 数据处理 SPSS操作 SPSS输出结果分析 知识点 ---- 目的 利用K均值聚类对数据快速分类...适用情景 数据处理 SPSS操作 分析——分类——K-均值聚类 最大迭代次数根据数据量,分类数量,电脑情况自己调整,能选多点就把上限调高点。...SPSS输出结果分析 在数据集最右两列保存了该个案的分类结果与到聚类中心的距离。 由于没有自定义初始中心,系统设定了三个。 迭代9次后中心值不变。...最终个三个聚类中心以及他们之间的距离 两个变量的显著性都小于0.05,说明这两个变量能够很好的区分各类 显示每个类有多少个案 由于只有两个维度,可以很好的用Tableau展示分类效果...注意:K-均值聚类可能陷入局部最优解,产生原因和解决办法可以百度 知识点 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。

    99330

    K均值聚类(k-means clustering)

    文章目录 K均值聚类的优缺点 优点 算法简单,容易实现 ; 算法速度很快; 对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数...通常k算法通常局部收敛。 算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好。...百度百科版本 K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。...问题在计算上很困难(NP难); 然而,有效的启发式算法快速收敛到局部最优。这些通常是类似于最大期望算法为混合物的高斯分布经由通过两个采用的迭代细化方法k-均值和高斯混合模型。...该算法与k最近邻分类器有松散的关系,这是一种流行的分类机器学习技术,由于名称的原因,它经常与k -means 混淆。应用1最近邻分类器,通过k -means 获得的聚类中心将新数据分类到现有聚类中。

    1.2K10

    机器学习(二)——K-均值聚类(K-means)算法

    最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习,在写这篇文章之前对FCM有过一定的了解,所以对K均值算法有一种莫名的亲切感...,言归正传,今天我和大家一起来学习K-均值聚类算法。...一 K-均值聚类(K-means)概述 1. 聚类 “类”指的是具有相似性的集合。聚类是指将数据集划分为若干类,使得类内之间的数据最为相似,各类之间的数据相似度差别尽可能大。...K-means k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。...二 python实现 首先,需要说明的是,我采用的是python2.7,直接上代码: #k-means算法的实现 #-*-coding:utf-8 -*- from numpy import * from

    97510

    如何正确使用「K均值聚类」?

    聚类算法中的第一门课往往是K均值聚类(K-means),因为其简单高效。本文主要谈几点初学者在使用K均值聚类时需要注意的地方。 1. 输入数据一般需要做缩放,如标准化。...方法2是对于数值型变量和分类变量分开处理,并将结果结合起来,具体可以参考Python的实现[1],如K-mode和K-prototype。 3. 输出结果非固定,多次运行结果可能不同。...我做了一个简单的实验,用K均值对某数据进行了5次聚类: km = MiniBatchKMeans(n_clusters=5)for i in range(5): labels = km.fit_predict...上百万个数据点往往可以在数秒钟内完成聚类,推荐Sklearn的实现。 5. 高维数据上的有效性有限。...在作者的数据集上,当数据量超过一定程度时仅K均值和HDBSCAN可用。 作者还做了下图以供参考对比。在他的实验中大部分算法如果超过了10万条数据后等待时长就变得很高,可能会需要连夜运行。

    1.5K30

    一文读懂K均值(K-Means)聚类算法

    聚类算法与分类算法的比较: 聚类 分类 核心 将数据分成多个组,探索各个组的数据是否有关联 从已经分组的数据中去学习,把新数据放到已经分好的组中去 学习类型 无监督学习算法,不需要标签进行训练 有监督学习算法...,需要标签进行训练 典型算法 K-Means、DBSCAN、层次聚类等 K近邻(KNN)、决策树、朴素贝叶斯、逻辑回归、支持向量机、随机森林等 算法输出 无需预设类别,类别数不确定,类别在学习中生成 预设类别...具体过程可以总结如下: a.首先随机选取样本中的K个点作为聚类中心; b.分别算出样本中其他样本距离这K个聚类中心的距离,并把这些样本分别作为自己最近的那个聚类中心的类别; c.对上述分类完的样本再进行每个类别求平均值...K-Means算法的优缺点 (1)K-Means算法的优点 原理比较简单,实现也是很容易,收敛速度快; 聚类效果较优,算法的可解释度比较强。...结论 K均值(K-Means)聚类算法原理简单,可解释强,实现方便,可广泛应用在数据挖掘、聚类分析、数据聚类、模式识别、金融风控、数据科学、智能营销和数据运营等多个领域,有着广泛的应用前景。

    1.2K20

    简单说说K均值聚类

    聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。...k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。...假设对基本的二维平面上的点进行K均值聚类,其实现基本步骤是: 1.事先选定好K个聚类中心(假设要分为K类)。2.算出每一个点到这K个聚类中心的距离,然后把该点分配给距离它最近的一个聚类中心。...3.更新聚类中心。算出每一个类别里面所有点的平均值,作为新的聚类中心。4.给定迭代此次数,不断重复步骤2和步骤3,达到该迭代次数后自动停止。...,(0,15)之间 y=np.random.rand(200)*15 center_x=[] #存放聚类中心坐标 center_y=[] result_x=[] #存放每次迭代后每一小类的坐标

    41010

    机器学习(三):K均值聚类

    k均值(k-means)算法就是一种比较简单的聚类算法。 一、k-means基本思想 K-means算法是聚类分析中使用最广泛的算法之一。...image1.jpg k-means算法的基础是最小误差平方和准则。其代价函数是: ? formula1.png 式中,μc(i)表示第i个聚类的均值。...我们希望代价函数最小,直观的来说,各类内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。...k-means算法是将样本聚类成 k个簇(cluster),其中k是用户给定的,其求解过程非常直观简单,具体算法描述如下: (1)随机选取 k个聚类质心点 (2)重复下面过程直到收敛 { 对于每一个样例...计算质心与数据点的距离 将数据点分配到距离最近的簇 对每一个簇,计算簇中所有点的均值,并将均值作为质心 三、程序 编写此程序使用的是python 3,并且需要安装

    1.6K80
    领券