首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

KNN算法在训练阶段做什么?

KNN算法(K-Nearest Neighbors)是一种基本的机器学习算法,用于分类和回归任务。在训练阶段,KNN算法主要进行以下步骤:

  1. 数据准备:收集并准备训练数据集,包括特征数据和相应的标签或目标变量。
  2. 特征标准化:对特征数据进行标准化处理,以确保各个特征之间的差异性不会导致算法偏向某些特征。
  3. 距离计算:根据选定的距离度量方法(如欧氏距离、曼哈顿距离等),计算训练数据集中每个样本与待分类样本之间的距离。
  4. K值选择:确定K值,即决定在预测阶段考虑多少个最近邻样本。
  5. 邻居选择:根据距离计算结果,选择距离待分类样本最近的K个样本作为其邻居。
  6. 类别决策:对于分类任务,通过投票或加权投票的方式,根据邻居的标签或目标变量确定待分类样本的类别。对于回归任务,通常将邻居的目标变量取平均值作为待分类样本的预测值。

KNN算法在训练阶段主要是对训练数据进行预处理和距离计算,以便在预测阶段能够根据邻居样本的信息进行分类或回归预测。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云机器学习平台(https://cloud.tencent.com/product/tfml)
  • 腾讯云人工智能平台(https://cloud.tencent.com/product/ai)

请注意,这里并未提及其他云计算品牌商,根据要求直接给出了答案内容。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • MADlib——基于SQL的数据挖掘解决方案(21)——分类之KNN

    数据挖掘中分类的目的是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。分类可描述如下:输入数据,或称训练集(Training Set),是由一条条数据库记录(Record)组成的。每一条记录包含若干个属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,...,vn;c),在这里vi表示字段值,c表示类别。分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特征,为每一个类找到一种准确的描述或模型。由此生成的类描述用来对未来的测试数据进行分类。尽管这些测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不是肯定,因为分类的准确率不能达到百分之百。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。

    03

    Machine Learning in Action:KNN Algorithm

    对于分类问题,最主要的任务就是找到对应数据合适的分类。而机器学习的另一项任务就是回归,比如CTR预测之类的。ml算法按照有无label可以分为有监督学习和无监督学习,对于无监督学习的算法比较经典的有聚类算法,有监督的相对来说较多,回归类算法基本都是的。按照参数有可以划分成有参数模型和无参数模型和半参数模型,有参数模型有两个特征,一个是用参数代表从训练数据中获得的信息,只有当target function包含在了hypothesis set里面才会收敛。无参数模型是没有参数的,直接存储所以的训练数据,也就是不再用参数代表训练数据,比如KNN,无训练过程,而且一定收敛。对于半参数模型,参数一定有,但是一定收敛,最经典的就是神经网络模型,神经网络模型在理论上是可以拟合所有的target function,所有只要训练数据够多,一定可以收敛,因为他的hypothesis set包含了所以的target function。 如何选择算法,需要考虑两个方面:首先是使用这个算法的目的是什么,想要完成什么任务,其次就是数据怎么来,规模多大。开放ml程序一般要经历一下步骤,首先是收集数据,准备输入数据,也就是数据预处理,分析输入数据,训练算法。

    02

    每个机器学习项目必须经过的五个阶段

    机器学习和预测分析在我们今天的生活中非常普遍。它几乎可以影响我们所做的一切,包括零售和批发定价,消费者习惯和行为,市场营销,娱乐,医药,物流,游戏,AI语音识别,AI图像识别,自驾车和机器人。 然而,无论你是在创造一辆自动驾驶汽车,预测客户流失,还是创建一个产品推荐系统,所有的机器学习项目都遵循相同的流程和五个基本的阶段。 阶段1:数据收集 数据是新的石油,它正在迅速成为世界上最有价值的商品,因为它促进了机器学习项目。没有数据,就没有机器学习,也没有预测分析。就像石油的拥有等级一样,数据一样拥有等级。最好的

    05
    领券