首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Nebula Graph 的 KV 存储分离原理和性能测评

过去十年,图计算无论在学术界还是工业界热度持续升高。相伴而来的是,全世界的数据正以几何级数形式增长。在这种情况下,对于数据的存储和查询的要求越来越高。因此,图数据库也在这个背景下引起了足够的重视。根据世界知名的数据库排名网站 DB-Engines.com 的统计,图数据库至 2013 年以来,一直是“增速最快”的数据库类别。虽然相比关系型数据库,图数据库的占比还是很小。但由于具有更加 graph native 的数据形式,以及针对性的关系查询优化,图数据库已经成为了关系型数据库无法替代的数据库类型。此外,随着数据量的持续爆炸性上涨,人们对于数据之间的关系也越来越重视。人们希望通过挖掘数据之间的关系,来获取商业上的成功,以及获得更多人类社会的知识。因此我们相信,天生为存储数据关系和数据挖掘而优化的图数据库会在数据库中持续保持高速增长。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于内存的分布式NoSQL数据库Redis(二)数据结构与通用命令

    Key:StringValue类型Value值应用场景pv_20200101String10000一般用于存储单个数据指标的结果person001Hashname:laoer age : 20 sex female用于存储整个对象所有属性值uvList{100,200,300,100,600}有序允许重复的集合,每天获取最后一个值uv_20200101Set{userid1,userid2,userid3,userid4……}无序且不重复的集合,直接通过长度得到UVtop10_productZSet【score,element】{10000-牙膏,9999-玩具,9998-电视……}有序不可重复的集合,统计TopNuser_filterBitMap{0101010101010000000011010}将一个字符串构建位,通过0和1来标记每一位product_20200101HypeLogLog{productid1,id2……}类似于Set集合,底层实现原理不一样,数据量大的情况下,性能会更好,结果可能存在一定的误差

    02
    领券