首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

教程 | 基于Keras的LSTM多变量时间序列预测

本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。...这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。...完成本教程后,你将学会: 如何将原始数据集转换成适用于时间序列预测的数据集 如何处理数据并使其适应用于多变量时间序列预测问题的 LSTM 模型。 如何做出预测并将结果重新调整到初始单元。...您可以从 UCI 机器学习库中下载此数据集。...请记住,每个批结束时,Keras 中的 LSTM 的内部状态都将重置,因此内部状态是天数的函数可能有所帮助(试着证明它)。

3.9K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Keras中带LSTM的多变量时间序列预测

    这在时间序列预测中是一个很大的好处,经典的线性方法很难适应多元或多输入预测问题。 在本教程中,您将了解如何在Keras深度学习库中开发用于多变量时间序列预测的LSTM模型。...请记住,Keras中的LSTM的内部状态在每个批次结束时被重置,所以是多天函数的内部状态可能是有用的(尝试测试)。...import Sequential from keras.layers import Dense from keras.layers import LSTM # 转换序列成监督学习问题 def series_to_supervised...import Sequential from keras.layers import Dense from keras.layers import LSTM # 将序列转换为监督学习问题 def...北京PM2.5数据集在UCI机器学习库 Keras中长期短期记忆模型的5步生命周期 Python中的长时间短时记忆网络的时间序列预测 Python中的长期短期记忆网络的多步时间序列预测 概要 在本教程中

    46.4K149

    使用Keras进行时间序列预测回归问题的LSTM实现

    基本简介 LSTM_learn 使用Keras进行时间序列预测回归问题的LSTM实现 数据 数据来自互联网,这些数据用于预测航空公司的人数,我们使用LSTM网络来解决这个问题 关于此处模型构建...Between Return Sequences and Return States for LSTMs in Keras Kears LSTM API 中给出的两个参数描述 return_sequences...在输出序列中,返回单个 hidden state值还是返回全部time step 的 hidden state值。 False 返回单个, true 返回全部。...是否返回除输出之外的最后一个状态。 区别 cell state 和 hidden state LSTM 的网络结构中,直接根据当前 input 数据,得到的输出称为 hidden state。...keras 中设置两种参数的讨论 1.return_sequences=False && return_state=False h = LSTM(X) Keras API 中,return_sequences

    6.7K51

    6 种用 LSTM 做时间序列预测的模型结构 - Keras 实现

    LSTM(Long Short Term Memory Network)长短时记忆网络,是一种改进之后的循环神经网络,可以解决 RNN 无法处理长距离的依赖的问题,在时间序列预测问题上面也有广泛的应用。...今天我们根据问题的输入输出模式划分,来看一下几种时间序列问题所对应的 LSTM 模型结构如何实现。 ? ---- 1. Univariate ?...Keras 代码: # define model【Vanilla LSTM】 model = Sequential() model.add( LSTM(50, activation='relu',...Keras 代码: # define model【Vanilla LSTM】 model = Sequential() model.add(LSTM(50, activation='relu', input_shape...Keras 代码: # define model【Vanilla LSTM】 model = Sequential() model.add(LSTM(100, activation='relu', return_sequences

    10.4K51

    使用Keras实现 基于注意力机制(Attention)的 LSTM 时间序列预测

    大家好,又见面了,我是你们的朋友全栈君。 时隔半年多,毕设男孩终于重操旧业,回到了 LSTM进行时间序列预测和异常检测的路上。...如果有阅读过我之前的博客,可以发现使用 LSTM作单类的时间序列异常检测也是基于对于时间序列的预测进行 登堂入室LSTM:使用LSTM进行简单的时间序列异常检测 本次我们要进行的是 使用 注意力机制 +...LSTM 进行时间序列预测,项目地址为Keras Attention Mechanism 对于时间步的注意力机制 首先我们把它git clone 到本地,然后配置好所需环境 笔者的 tensorflow...版本为1.6.0 Keras 版本为 2.0.2 打开文件夹,我们主要需要的是attention_lstm.py 以及 attention_utils.py 脚本 项目中生成数据的函数为 def get_data_recurrent...,也是相同的) 对于时间步和输入维的注意力机制 待补充 注:参考 keras-attention-mechanism 以及 Keras中文文档 代码已上传到我的github 发布者:全栈程序员栈长

    5.8K20

    技术 | 如何在Python下生成用于时间序列预测的LSTM状态

    在本教程中,你将学习如何设计、进行试验并解释从试验中得出的结果,探讨是用训练数据集给合适的 LSTM 模型初始化状态种子好还是不使用先前状态好。...如何判断在解决您的时间序列预测问题时,于预测前为LSTM状态种子初始化是否适当。 让我们开始吧。...LSTM状态种子初始化 当在Keras中使用无状态LSTM时,您可精确控制何时清空模型内部状态。 这是通过使用model.reset_states()函数实现的。...当训练时有状态的LSTM时,清空训练epoch之间的模型状态很重要。这样的话,每个epoch在训练期间创建的状态才会与该epoch的观察值序列相匹配。...如何开发出强大的测试工具,评测LSTM模型解决时间序列问题的性能。 如何确定是否在预测前使用训练数据初始化LSTM模型状态种子。

    2K70

    使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测

    在本文中,您将发现如何使用Keras深度学习库在Python中开发LSTM网络,以解决时间序列预测问题。 完成本教程后,您将知道如何针对自己的时间序列预测问题实现和开发LSTM网络。...关于国际航空公司的旅客时间序列预测问题。 如何基于时间序列预测问题框架开发LSTM网络。 如何使用LSTM网络进行开发并做出预测,这些网络可以在很长的序列中保持状态(内存)。...LSTM 拥有三个门,来保护和控制细胞状态。 一个单元内有三种类型的门: 忘记门:有条件地决定从该块中丢弃哪些信息。 输入门:有条件地决定输入中的哪些值来更新内存状态。...我们可以更好地控制何时在Keras中清除LSTM网络的内部状态。这意味着它可以在整个训练序列中建立状态,甚至在需要进行预测时也可以保持该状态。...LSTM网络可以以与其他层类型堆叠相同的方式堆叠在Keras中。所需配置的一个附加函数是,每个后续层之前的LSTM层必须返回序列。

    3.4K10

    入门 | 十分钟搞定Keras序列到序列学习(附代码实现)

    次要案例:当输入序列和输出序列长度相同 当输入序列和输出序列长度相同时,你可以通过 Keras LSTM 或者 GRU 层(或者其中的堆栈)简单地实现模型。...注意我们抛弃了编码器 RNN 的输出,只恢复其状态。该状态在下一步中充当解码器的「语境」。 另一个 RNN 层作为「解码器」:在给定目标序列先前字母的情况下,它被训练以预测目标序列的下一个字符。...在推理模式中,即当要解码未知的输入序列,我们完成了一个稍微不同的处理: 把输入序列编码进状态向量 从大小为 1 的目标序列开始 馈送状态向量和 1 个字符的目标序列到解码器从而为下一字符生成预测 通过这些预测采样下一个字符...这被用于恢复编码器的状态。 inital_state 调用参数指定一个 RNN 的初始状态,这被用于把编码器状态作为初始状态传递至解码器。...这就是我们的十分钟入门 Keras 序列到序列模型教程。

    1.4K120

    使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测|附代码数据

    如何使用LSTM网络进行开发并做出预测,这些网络可以在很长的序列中保持状态(内存)。在本教程中,我们将为时间序列预测问题开发LSTM。...一个单元内有三种类型的门:忘记门:有条件地决定从该块中丢弃哪些信息。输入门:有条件地决定输入中的哪些值来更新内存状态。输出门:根据输入的内存,决定输出什么。...我们可以更好地控制何时在Keras中清除LSTM网络的内部状态。这意味着它可以在整个训练序列中建立状态,甚至在需要进行预测时也可以保持该状态。...本文选自《使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测》。...PYTHON中KERAS的LSTM递归神经网络进行时间序列预测python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译用于NLP的Python:使用Keras的多标签文本LSTM

    2.2K20

    十分钟掌握Keras实现RNN的seq2seq学习

    当输入和输出序列的长度相同时 当输入序列和输出序列具有相同长度的时候,你可以使用Keras LSTM或GRU层(或其堆叠)很轻松地实现这样地模型。...下面是它的工作原理: 有一个RNN层(或其堆叠)作为“编码器”:它负责处理输入序列并返回其自身的内部状态。注意,我们将丢弃编码器RNN的输出,只恢复状态。...在推理模式下,即当我们要解码未知输入序列时,过程稍稍会有些不同: 将输入序列编码为状态向量。 以大小为1的目标序列开始。 将状态向量和一个字符的目标序列提供给解码器,以产生下一个字符的预测。...它利用了Keras RNN的三个主要功能: return_state contructor参数,配置一个RNN层返回第一个条目是输出,下一个条目是内部RNN状态的列表。用于恢复编码器的状态。...有关Keras的序列到序列模型的十分钟介绍已经结束了。

    95640

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

    本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 ---- 简单的介绍 时间序列涉及按时间顺序收集的数据。我用 xt∈R 表示单变量数据,其中 t∈T 是观察数据时的时间索引。...sigmoid 函数/层输出 0 到 1 之间的数字,其中 0 表示 没有通过 , 1 表示 _全部通过_。因此,LSTM 能够有条件地从单元状态中添加或删除信息。...最后,标准化后的单元格状态乘以过滤后的输出,得到隐藏状态 ht 并传递给下一个单元格: 加载必要的库和数据集 # 加载必要的包 library(keras) 或者安装如下: # 然后按如下方式安装 TensorFlow...: install_keras() 我们将使用可用的长期利率数据 ,这是从 2007 年 1 月到 2018 年 3 月的月度数据。...由于网络是有状态的,我们必须从当前 [ samples , features ] 中以 [ _samples_ , timesteps , features ]形式的 3 维数组提供输入批次,其中

    1.2K30

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测|附代码数据

    2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能 本文将演示如何在 R 中使用 LSTM 实现时间序列预测。...为简化分析,我们将仅考虑离散时间序列。 长短期记忆 (LSTM) 网络是一种特殊的循环神经网络 (RNN),能够学习长期依赖关系。...sigmoid 函数/层输出 0 到 1 之间的数字,其中 0 表示 没有通过 , 1 表示 全部通过。因此,LSTM 能够有条件地从单元状态中添加或删除信息。...最后,标准化后的单元格状态乘以过滤后的输出,得到隐藏状态 ht 并传递给下一个单元格: 加载必要的库和数据集 # 加载必要的包 library(keras) 或者安装如下: # 然后按如下方式安装 TensorFlow...: install_keras() 我们将使用可用的长期利率数据 ,这是从 2007 年 1 月到 2018 年 3 月的月度数据。

    74800

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

    本文约1700字,建议阅读5分钟本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 全文链接:http://tecdat.cn/?...sigmoid 函数/层输出 0 到 1 之间的数字,其中 0 表示 没有通过 , 1 表示 _全部通过_。因此,LSTM 能够有条件地从单元状态中添加或删除信息。...最后,标准化后的单元格状态乘以过滤后的输出,得到隐藏状态 ht 并传递给下一个单元格: 加载必要的库和数据集 # 加载必要的包library(keras) 或者安装如下: # 然后按如下方式安装 TensorFlow...:install_keras() 我们将使用可用的长期利率数据 ,这是从 2007 年 1 月到 2018 年 3 月的月度数据。...由于网络是有状态的,我们必须从当前 [ samples ,  features ] 中以 [ _samples_ ,  timesteps ,  features ]形式的 3 维数组提供输入批次,其中

    58511

    如何在Python中将TimeDistributed层用于Long Short-Term Memory Networks

    在Keras中遇到这种困难的其中一个原因是使用了TimeDistributed装饰器层,并且需要一些LSTM层来返回序列而不是单个值。...教程概述 本教程分为5个部分; 他们是: TimeDistributed层 序列学习问题 用于序列预测的一对一LSTM 用于序列预测的多对一LSTM(不含TimeDistributed) 用于序列预测的多对多...批大小(或批尺寸,batch size)被设置为迭代次数(epoch)中的样本数量,以避免必须手动配置LSTM处于有状态(模式)和管理状态的重置,尽管(这些操作)在每个样本被显示给网络之后,为了更新权重可以很容易地完成...我们可以看到LSTM层有140个参数,如上一节所述。 LSTM单元已被瘫痪掉,并且将各自输出一个单值,向完全连接的层提供5个值的向量作为输入。时间维度或序列信息已被丢弃,并坍缩成5个值的向量。...model.add(TimeDistributed(Dense(1))) 输出层中的单个输出值是关键。它强调我们打算从输入序列中的每个时间步中输出一个时间步。

    3.9K110

    How to Use the TimeDistributed Layer for Long Short-Term Memory Networks in Python 译文

    在Keras中遇到这种困难的其中一个原因是使用了TimeDistributed装饰器层,并且需要一些LSTM层来返回序列而不是单个值。...教程概述 本教程分为5个部分; 他们是: TimeDistributed层 序列学习问题 用于序列预测的一对一LSTM 用于序列预测的多对一LSTM(不含TimeDistributed) 用于序列预测的多对多...批大小(或批尺寸,batch size)被设置为迭代次数(epoch)中的样本数量,以避免必须手动配置LSTM处于有状态(模式)和管理状态的重置,尽管(这些操作)在每个样本被显示给网络之后,为了更新权重可以很容易地完成...我们可以看到LSTM层有140个参数,如上一节所述。 LSTM单元已被瘫痪掉,并且将各自输出一个单值,向完全连接的层提供5个值的向量作为输入。时间维度或序列信息已被丢弃,并坍缩成5个值的向量。...model.add(TimeDistributed(Dense(1))) 输出层中的单个输出值是关键。它强调我们打算从输入序列中的每个时间步中输出一个时间步。

    1.6K120

    PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子|附代码数据

    p=26519 最近我们被客户要求撰写关于LSTM的研究报告,包括一些图形和统计输出。 一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。...数据集是天然气价格 ( 查看文末了解数据获取方式 ) ,具有以下特征: 日期(从 1997 年到 2020 年)- 为 每天数据 以元计的天然气价格 相关视频:LSTM神经网络架构和工作原理及其在Python...,以便 LSTM 收敛)。...samples, features] 转换为 [samples, steps, features] - 与算法 LSTM 一起使用的维度。...下面的序列拆分使用“walk-forward”方法来创建训练数据集。

    34141

    LSTM原理及生成藏头诗(Python)

    、relu; RNN的输出为:o(t) = g( V * h(t) + b2),g为激活函数,当用于分类任务,一般用softmax; 1.3 从RNN到LSTM 但是在实际中,RNN在长序列数据处理中...但其实LSTM作为一种反馈神经网络,核心还是历史的隐藏状态信息的反馈,也就是下图的Ct: 对标RNN的ht隐藏状态的更新,LSTM的Ct只是多个些“门控”删除或添加信息到状态信息。...由下面依次介绍LSTM的“门控”:遗忘门,输入门,输出门的功能,LSTM的原理也就好理解了。 2.2 遗忘门 LSTM 的第一步是通过"遗忘门"从上个时间点的状态Ct-1中丢弃哪些信息。..., output_dim=128), # 第一个LSTM层,返回序列作为下一层的输入 tf.keras.layers.LSTM(128, dropout=0.5, return_sequences...=True), # 第二个LSTM层,返回序列作为下一层的输入 tf.keras.layers.LSTM(128, dropout=0.5, return_sequences=True)

    1.2K30

    如何在Python中用LSTM网络进行时间序列预测

    将时间序列转化为监督学习 Keras中的LSTM模型假设您的数据分为两部分:输入(X)和输出(y)。...可以从观察中移除该趋势,然后再添加至预测中,将预测恢复至原始区间并计算出相当的误差值。 移除趋势的标准方法是差分数据。也就是从当前观察值(t)中减去从上一时间步(t-1)得到的观察值。...注意,由于不存在用于计算差分值的先前观察值,因此须略过该序列中的第一个观察值。 为了使差分序列的预测恢复至原始的区间内,我们还需要逆转这个流程。...我们可以通过差分整个序列来测试这些函数,然后再将它恢复至原始区间内,具体代码如下所示: 运行示例,打印载入数据的前5行,然后再打印差分序列的前5行,最后再打印序列逆转差分操作后的前5行。...在Keras中,这被称为stateful,在定义LSTM网络层时将“stateful”语句设定为“True”。 在默认下,Keras中的LSTM 网络层在一批数据之间维持状态。

    4.5K40

    AI 技术讲座精选:Python中使用LSTM网络进行时间序列预测

    将时间序列转化为监督学习 Keras中的LSTM模型假设您的数据分为两部分:输入(X)和输出(y)。...可以从观察中移除该趋势,然后再添加至预测中,将预测恢复至原始区间并计算出相当的误差值。 移除趋势的标准方法是差分数据。也就是从当前观察值(t)中减去从上一时间步(t-1)得到的观察值。...注意,由于不存在用于计算差分值的先前观察值,因此须略过该序列中的第一个观察值。 ? 为了使差分序列的预测恢复至原始的区间内,我们还需要逆转这个流程。...在Keras中,这被称为stateful,在定义LSTM网络层时将“stateful”语句设定为“True”。 在默认下,Keras中的LSTM 网络层在一批数据之间维持状态。...需要进行实验以观察LSTM是否能学习和有效预测留在数据中的暂时性独立结构,如趋势和季节性。 对比无状态。本教程使用的是有状态LSTM。应将结果与无状态LSTM结构作对比。 统计学意义。

    1.7K40
    领券