首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

探索学习率设置技巧以提高Keras中模型性能 | 炼丹技巧

迁移学习 我们使用迁移学习将训练好的机器学习模型应用于不同但相关的任务中。这在深度学习这种使用层级链接的神经网络中非常有效。特别是在计算机视觉任务中,这些网络中的前几层倾向于学习较简单的特征。...在fast.ai课程中,Jeremy Howard探讨了迁移学习的不同学习率策略以提高模型在速度和准确性方面的表现。...使用差分学习率的CNN样例 在Keras中实现差分学习率 为了在Keras中实现差异学习,我们需要修改优化器源代码。...在这种技术中,我们不时的进行学习率突增。下面是使用余弦退火重置三个均匀间隔的学习速率的示例。 ?...每个周期需要两倍于上一个周期大小 在Keras中实现SGDR 使用Keras Callbacks回调函数,我们可以实现以遵循特定公式的方式更新学习率。

2.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ·关于在Keras中多标签分类器训练准确率问题

    [知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。...在CNN中,sigmoid分类器训练、测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样。如何使sigmoid分类器的准确率的判断标准为全部预测准确即为预测准确。有什么解决方案?...二、问题回复 问题中提出的解决多标签多分类问题的解决方法是正确的。但是要注意几点,keras里面使用这种方式的acc是二进制acc,会把多标签当做单标签计算。 什么意思呢?...举个例子,输入一个样本训练,共有十个标签,其中有两个为1,而你预测结果为全部是0,这时你得到准确率为0.8。最后输出的ac是所有样本的平均。可以看出这个准确率是不可信的。...设置合适的权重值,val_acc上升了,val多标签acc也达到了更高。 关于如何设置合适权重,笔者还在实验中,可以关注下笔者的知乎和博客。后面实验结果会及时更新。

    2.1K20

    keras中的损失函数

    损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...', optimizer='sgd') 或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...(即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels

    2.1K20

    keras中的数据集

    数据在深度学习中的重要性怎么说都不为过,无论是训练模型,还是性能调优,都离不开大量的数据。有人曾经断言中美在人工智能领域的竞赛,中国将胜出,其依据就是中国拥有更多的数据。...具体说来,keras.datasets模块包含了加载和获取流行的参考数据集的方法。...通过这些数据集接口,开发者不需要考虑数据集格式上的不同,全部由keras统一处理,下面就来看看keras中集成的数据集。...出于方便起见,单词根据数据集中的总体词频进行索引,这样整数“3”就是数据中第3个最频繁的单词的编码。...作为惯例,“0”不代表特定单词, 加载数据集的代码: from keras.datasets import imdb (x_train, y_train), (x_test, y_test) =

    1.8K30

    使用Keras的Python深度学习模型的学习率方案

    在这篇文章中,你将了解如何使用Keras深度学习库在Python中使用不同的学习率方案。 你会知道: 如何配置和评估time-based学习率方案。 如何配置和评估drop-based学习率方案。...这里我们将这种方法称为学习率方案,它默认使用不变的学习率为每个训练周期更新网络权重。 在训练过程中,最简单也是最常用的学习率适应是随时间减小学习率的技术。...两个流行和易于使用的学习率方案如下: 根据周期逐步降低学习率。 在特定周期,标记骤降学习率。 接下来,我们将介绍如何根据Keras使用这些学习率方案。...使用深入学习模式的另一个流行的学习率方案是在训练周期特定次数下有计划的降低学习率。...请注意,我们将SGD类中的学习率设置为0,以表明它不被使用。不过,如果你希望这种学习率方案中有动量,你可以在SGD中设定一个动量项。

    2.8K50

    理解keras中的sequential模型

    keras中的主要数据结构是model(模型),它提供定义完整计算图的方法。通过将图层添加到现有模型/计算图,我们可以构建出复杂的神经网络。...Keras有两种不同的构建模型的方法: Sequential models Functional API 本文将要讨论的就是keras中的Sequential模型。...keras中的Sequential模型构建也包含这些步骤。 首先,网络的第一层是输入层,读取训练数据。...在keras中,Sequential模型的compile方法用来完成这一操作。例如,在下面的这一行代码中,我们使用’rmsprop’优化器,损失函数为’binary_crossentropy’。...总结 keras中的Sequential模型其实非常强大,而且接口简单易懂,大部分情况下,我们只需要使用Sequential模型即可满足需求。

    3.6K50

    处理Keras中的`Unknown layer`错误

    处理Keras中的Unknown layer错误:模型保存和加载 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...在本篇博客中,我们将探讨如何处理Keras中的Unknown layer错误。这个错误通常出现在模型保存和加载过程中,了解并解决它对保持模型的可用性非常重要。...什么是Unknown layer错误 Unknown layer错误是Keras中的一种常见错误,通常在加载模型时出现。...A2:tf.keras是TensorFlow中的高级API,与独立的Keras库相比,具有更好的兼容性和集成性。...小结 在这篇文章中,我们详细探讨了Keras中的Unknown layer错误的成因,并提供了多种解决方案,包括注册自定义层、确保代码一致性、使用tf.keras API等。

    10210

    ICCII中如何保持特定module的port

    在进行后端设计时,为了使得最终的结果更加优化,也就是面积,功耗,性能更好,工具在优化时可能会把module的port改变。但是这样可能会带来一些问题。...这种情况当然首选的建议是尽量监测特定物理cell的pin,然后对这些cell设置dont touch,而不是直接检测hierarchical port。 另外一个解决方法就是,将这些port保持住。...但是icc2中,在hierarchy port设置dont touch属性并不有效。 我在刚开始使用ICC2的时候,就曾经在项目中遇到这样的情况。...当时根据ICC的使用经验,对moudle的所有的port都设置了dont touch。但是最后发现,还是有很多port不见了。...其实,ICCII中有专门的命令来解决的这个问题,那就是用set_freeze_port,请大家记住这个命令。而这个命令的具体用法,这里就不赘述了,大家可以直接使用在线帮助(man)。

    2.6K20

    npm 中如何下载特定的组件版本

    本文作者:IMWeb helinjiang 原文出处:IMWeb社区 未经同意,禁止转载 本文详细讨论了 npm 中依赖版本的版本号配置写法及比较。 1....语义化的版本控制 在进入主题之前,我们得先了解一个很重要的概念,就是语义化的版本控制(Semantic Versioning Specification (SemVer)),目前的版本为 v2.0.0。...版本号的配置写法 在 package.json 文件中,我们配置 dependencies 等依赖关系时,有几种配置方式。...当它们也有共同点: 当通过这两种方式获取的结果中,主版本号一定是不变的,因为主版本号意味这 API 不兼容。...v1.4.3 做了一次更新 (Node v0.10.26(Stable)开始将 npm 升级到 v1.4.3), npm install xx --save 之后,保存在 package.json 文件中的依赖版本号前面

    4.3K60

    Keras中创建LSTM模型的步骤

    在这篇文章中,您将了解创建、训练和评估Keras中长期记忆(LSTM)循环神经网络的分步生命周期,以及如何使用训练有素的模型进行预测。...阅读这篇文章后,您将知道: 如何定义、编译、拟合和评估 Keras 中的 LSTM; 如何为回归和分类序列预测问题选择标准默认值。...这是 Keras 中的有用容器,因为传统上与图层关联的关注点也可以拆分并添加为单独的图层,清楚地显示它们在数据从输入到预测转换中的作用。...可能最常用的优化算法,因为它们通常更好的性能是: Stochastic Gradient Descent: 或”sgd”,这需要调整学习速率和动量 ADAM: 或”adam”,这需要调整学习率。...总结 在这篇文章中,您发现了使用 Keras 库的 LSTM 循环神经网络的 5 步生命周期。 具体来说,您了解到: 1、如何定义、编译、拟合、评估和预测 Keras 中的 LSTM 网络。

    3.7K10

    npm 中如何下载特定的组件版本

    本文作者:IMWeb helinjiang 原文出处:IMWeb社区 未经同意,禁止转载 本文详细讨论了 npm 中依赖版本的版本号配置写法及比较。 1....语义化的版本控制 在进入主题之前,我们得先了解一个很重要的概念,就是语义化的版本控制(Semantic Versioning Specification (SemVer)),目前的版本为 v2.0.0。...版本号的配置写法 在 package.json 文件中,我们配置 dependencies 等依赖关系时,有几种配置方式。...当它们也有共同点: 当通过这两种方式获取的结果中,主版本号一定是不变的,因为主版本号意味这 API 不兼容。...v1.4.3 做了一次更新 (Node v0.10.26(Stable)开始将 npm 升级到 v1.4.3), npm install xx --save 之后,保存在 package.json 文件中的依赖版本号前面

    4.1K30

    解决Keras中的InvalidArgumentError: Incompatible shapes

    解决Keras中的InvalidArgumentError: Incompatible shapes 摘要 大家好,我是默语,擅长全栈开发、运维和人工智能技术。...在这篇博客中,我将深入解析并解决Keras中的一个常见错误——InvalidArgumentError: Incompatible shapes。此错误通常出现在模型训练和数据处理阶段。...解决方案:确保所有预处理步骤中的数据形状一致。可以使用Keras的tf.keras.preprocessing模块进行数据预处理。...A2:可以使用Keras的tf.keras.layers模块中的Reshape层或Lambda层来调整数据形状。...我们详细探讨了Keras中的InvalidArgumentError: Incompatible shapes错误的成因,并提供了多种解决方案,包括确保输入数据形状一致、模型层之间的数据形状一致、数据预处理中的形状一致等

    10710

    在特定环境中安装指定版本的Docker

    通常用官方提供的安装脚本或软件源安装都是安装的比较新 Docker 版本,有时我们需要在一些特定环境的服务器上安装指定版本的 Docker。今天我们就来讲一讲如何安装指定版本的 Docker 。...hkp://pgp.mit.edu:80 –recv-keys 58118E89F3A912897C070ADBF76221572C52609D 新增一个 docker.list 文件,在其中增加对应的软件安装源...docker.list deb https://apt.dockerproject.org/repo ubuntu-xenial main CentOS 新增一个 docker.repo 文件,在其中增加对应的软件安装源...raw=true | sh 使用需要的 Docker 版本替换以下脚本中的 ,目前该脚本支持的 Docker 版本: 1.10.3 1.11.2 1.12.1 1.12.2 1.12.3 1.12.4...1.12.5 1.12.6 1.13.0 1.13.1 17.03.0 17.03.1 17.04.0 注:脚本使用 USTC 的软件包仓库,已基于 Ubuntu_Xenial , CentOS7 以及

    3.9K20

    关于某些特定直播场景中的技术分析

    今天,小编为大家总结了一些在直播平台搭建中,在某些特定场景中的技术分析,对想要接触直播平台搭建流程的投资商提供些许技术理解和帮助,下面一起来看下: 一、对于低延迟的直播需求 3~5秒延时对于多数常见的直播形式一般问题不大...对于这种场景,现在一般的直播平台采取的方案是借助第三方的连麦服务,然后再推给CDN厂商来加速视频传输的速度。...317eabe1bfbf407cae4a7356041fa0c6.jpeg 二、短延迟直播与实时音视频通讯的区别 1、WebRTC主要用于解决实时音视频通话的需求,对延迟的要求非常严格,例如会议直播中...,一个会议室中参与的多方可以进行视频通话,每个参与者可以看到其他的参与者,也能听到其他参与者说话。...以上就是某些特定直播场景中的技术分析,在直播平台搭建过程中会经常遇到。之后小编会不定期的更新直播平台搭建中的一些技术小解析,敬请关注。

    1.2K10

    tensorflow中keras.models()的使用总结

    初学者在调用keras时,不需要纠结于选择tf.keras还是直接import keras,现如今两者没有区别。从具体实现上来讲,Keras是TensorFlow的一个依赖(dependency)。...但,从设计上希望用户只透过TensorFlow来使用,即tf.keras。 所以在此主要记录一下tf.keras.models的使用。...由于Layer提供了集中函数式的调用方式,通过这种调用构建层与层之间的网络模型。 所以其编程特点: 1. 我们构建层,通过layer对象的可调用特性,或者使用apply与call实现链式函数调用。...导入 import tensorflow as tf import tensorflow.keras as keras import tensorflow.keras.layers as layers...hide1_layer, hide2_layer, output_layer]) 之后的训练中不要忘记改变model变量。

    6.5K01

    Keras中的Embedding层是如何工作的

    在学习的过程中遇到了这个问题,同时也看到了SO中有相同的问题。而keras-github中这个问题也挺有意思的,记录一下。...这个解释很不错,假如现在有这么两句话 Hope to see you soon Nice to see you again 在神经网络中,我们将这个作为输入,一般就会将每个单词用一个正整数代替,这样,上面的两句话在输入中是这样的...7,代表的是单词表的长度;第二个参数是output_dim,上面的值是2,代表输出后向量长度为2;第三个参数是input_length,上面的值是5,代表输入序列的长度。...vector就是下面这个: [[0.7, 1.7], [0.1, 4.2], [1.0, 3.1], [0.3, 2.1], [4.1, 2.0]] 原理上,从keras的那个issue可以看到,在执行过程中实际上是查表...,将输入的整数作为index,去检索矩阵的对应行,并将值取出。

    1.4K40
    领券