首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用LSTM模型预测股价基于Keras

本期作者:Derrick Mwiti 本期翻译:HUDPinkPig 未经授权,严禁转载 编者按:本文介绍了如何使用LSTM模型进行时间序列预测。...股票市场的数据由于格式规整和非常容易获得,是作为研究的很好选择。但不要把本文的结论当作理财或交易建议。 本文将通过构建用Python编写的深度学习模型来预测未来股价走势。...虽然预测股票的实际价格非常难,但我们可以建立模型来预测股票价格是上涨还是下跌。本文使用的数据可以在https://github.com/mwitiderrick/stockprice下载。...的一些模型来构建LSTM 1、顺序初始化神经网络 2、添加一个紧密连接的神经网络层 3、添加长短时记忆层(LSTM) 4、添加dropout层防止过拟合 from keras.models import...然后,我们指定1个单元的输出作为全连接层(Dense layer)。接着,我们使用目前流行的adam优化器编译模型,并用均方误差(mean_squarred_error)来计算误差。

4.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言深度学习Keras循环神经网络(RNN)模型预测多输出变量时间序列

    它在隐藏单元之间建立递归连接,并在学习序列后预测输出。 在本教程中,我们将简要地学习如何用R中的Keras RNN模型来拟合和预测多输出的序列数据,你也可以对时间序列数据应用同样的方法。...我们将使用Keras R接口在R中实现神经网络: 准备数据 定义模型 预测和可视化结果 我们将从加载R的必要包开始。 library(keras) 准备数据 首先,我们将为本教程创建一个多输出数据集。...在这个例子中,步长值是2,我们将把x的第一和第二行以及y的第二行作为一个标签值。下一个元素成为x的第二和第三行以及y的第三行,这个序列一直持续到结束。下表解释了如何创建x和y数据的序列。...我们将在模型的第一层设置输入维度,在最后一层设置输出维度。 model %>% summary() 我们将用训练数据来拟合这个模型。...rnn模型来拟合和预测多输出的顺序数据。

    2.2K10

    预测金融时间序列——Keras 中的 MLP 模型

    作为一个例子,金融系列被选择为完全随机的,一般来说,如果传统的神经网络架构能够捕获必要的模式来预测金融工具的行为,那就很有趣了。 本文中描述的管道可以轻松应用于任何其他数据和其他分类算法。...无论是在分类的情况下,还是在回归的情况下,我们都会以某种时间序列窗口(例如,30 天)作为入口,尝试预测第二天的价格走势(分类),或者变化(回归)的价值。...神经网络架构 我们将使用多层感知器作为基本模型。让我们把Keras作为一个实现框架——它非常简单、直观,你可以用它来实现相当复杂的计算图,但到目前为止我们还不需要它。...在输出端,我们放置一个神经元(或两个用于分类),根据任务(分类或回归),它要么在输出端有一个 softmax,要么让它没有非线性,以便能够预测任何值。...Keras 还允许我们非常灵活地控制训练过程,例如,如果我们的结果没有改善,最好减少梯度下降步骤的值——这正是 Reduce LR On Plateau 所做的,我们将其添加为回调到模型训练。

    5.4K51

    【DS】利用Keras长短期记忆(LSTM)模型预测股票价格

    在本教程中,我们将构建一个Python深度学习模型,用于预测股票价格的未来行为。我们假设读者熟悉Python中的深度学习概念,特别是LSTM。...虽然预测股票的实际价格是一个上坡路,但是我们可以建立一个模型来预测股票的价格是涨是跌。本教程使用的数据和notebook可以在这里找到。需要注意的是,影响股价的因素总是存在的,比如政治氛围和市场。...我们使用以下参数添加LSTM层: 50个单元,也就是输出空间的维度 return_sequence =True,它决定是否返回输出序列中的最后一个输出,还是返回完整的序列 input_shape作为训练集的...然后,我们添加指定1个单元的输出的Dense层。在此之后,我们使用流行的adam优化器编译模型,并将损失设置为mean_squarred_error。这会计算平方误差的均值。...从图中我们可以看到,股票的实际价格上升了,而我们的模型也预测了股票的价格会上升。这清楚地显示了LSTMs在分析时间序列和顺序数据方面的强大功能。

    3.3K81

    教程 | 使用Keras实现多输出分类:用单个模型同时执行两个独立分类任务

    你甚至可以将多标签分类和多输出分类结合起来,这样每个全连接头都能预测多个输出了! 如果这开始让你感到头晕了,不要担心——这篇教程将引导你通过 Keras 透彻了解多输出分类。...在这篇文章中,我们将了解如何通过 Keras 深度学习库使用: 多个损失函数 多个输出 正如前面提到的,多标签预测和多输出预测之间存在区别。...注意我们的数据集中不包含红色/蓝色鞋子或黑色裙子/衬衫,但本文所介绍的 Keras 多输出分类方法依然能正确预测这些组合。...Keras 架构 要使用 Keras 执行多输出预测,我们要实现一种特殊的网络架构(这是我专为这篇文章创造的),我称之为 FashionNet。...现在(1)多输出 Keras 模型和(2)标签二值化器都已经放入了内存,我们可以分类图像了: ?

    3.9K30

    keras多层感知器识别手写数字执行预测代码_感知机模型多层神经网络

    2.Keras建立多层感知器模型(接上一篇) 2.1简单介绍多层感知器模型 注:以下模型及其说明来自于《TensorFlow+Keras深度学习人工智能实践应用》林大贵 著 以矩阵方式仿真多层感知器模型的工作方式...输出层y 模拟输出神经元,就是预测的结果,共有10个输出神经元。对应我们希望预测的数字,从0到9共有10个结果。 权重w2 权重模拟神经元的轴突,连接输入与接收神经元,负责传送信息。...建立Sequential模型,并且加入‘’输入层“,”Dropout功能“和”输出层“ model=Sequential() #建立模型 model.add(Dense...训练结果会保存在train_history中 执行代码,运行结果如下 可以看到,训练样本原来是60000的,把其中的48000作为训练集,剩下的12000作为验证集。...接下来,模型训练完后,在开始预测前,我们先评估一下训练模型的准确率是多少 scores=model.evaluate(X_Test_normalize,y_TestOneHot) print(scores

    48110

    Python中Keras深度学习库的回归教程

    在完成这个循序渐进的教程后,你将知道: 如何加载 CSV 数据集并将其作为 Keras 库算法的输入。 如何使用 Keras 建立一个回归问题的神经网络模型。...这样的方式是很理想的,因为 scikit-learn 擅长评估模型,并允许我们通过寥寥数行代码,就能使用强大的数据预处理和模型评估方案。 Keras 包装函数需要一个函数作为参数。...没有激活函数用于输出层,因为这是一个回归问题,我们希望直接预测数值,而不需要采用激活函数进行变换。 我们会使用高效的 ADAM 优化算法以及优化的最小均方误差损失函数。...我们还使用一个常量随机种子来初始化随机数生成器,我们将为本教程中评估的每个模型重复整个过程(相同的随机数)。这是为了确保我们始终如一地比较模型。...Standardized: 29.54 (27.87) MSE 这部分的进一步扩展可以对输出变量采用类似的缩放,例如将其归一化到0-1的范围,并在输出层上使用Sigmoid或类似的激活函数将输出预测缩小到通输入相同的范围

    5.2K100

    Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化

    p=23573 我们可以很容易地用Keras序列模型拟合回归数据并预测测试数据。 在这篇文章中,我们将简要地学习如何用Python中的Keras神经网络API拟合回归数据。...我们将用Keras回归和序列模型本身这两种方法检查模型。该教程涵盖了以下内容(点击文末“阅读原文”获取完整代码数据)。...x_ax = range(N) plt.plot(x_ax, x, 'o') plt.plot(x_ax, y, lw=1.5, color=c) plt.legend() 红线是y输出,其余的点是x...return model Model() 用Keras回归模型拟合 我们将上述模型纳入Keras回归模型中,用x和y的数据拟合模型。然后,我们可以预测x数据。...在本教程中,我们已经简单地学习了如何用Python中的Keras神经网络模型来拟合和预测回归数据。谢谢您的阅读!

    61830

    Tensorflow2——Eager模式简介以及运用

    : 3)对于多次微分: 4、自定义训练 1)导入数据,创建Dataset 2)创建模型 3)自定义训练 1、什么是Eager模式?...不管对于变量还是常量的跟踪运算,都要求一种float的数据运算类型。...() as t: t.watch(v) #让t去跟踪常量的运算,因为v是一个常量 loss=v*v dloss_dv=t.gradient(loss,v) dloss_dv.numpy...主要用在分类的时候,如果只是简单的输出,只是对于每一类可能性的预测的输出,但是我要要的输出必须是确定的哪一类,所以需要确定里面的最大的值(也就是说最可能是哪一类)。...————————————————————————————————— 3、定义损失函数 #定义损失函数 def loss(model,x,y): y_=model(x) #y_是预测的label

    1.2K20

    精通 TensorFlow 1.x:1~5

    创建和添加层 编译 Keras 模型 训练 Keras 模型 使用 Keras 模型进行预测 Keras 的附加模块 MNIST 数据集的 Keras 序列模型示例...在 Keras 中创建模型的工作流程 Keras 的简单工作流程如下: 创建模型 创建层并将其添加到模型中 编译模型 训练模型 使用该模型进行预测或评估 我们来看看每个步骤。...,然后在创建模型时,输入和输出层作为张量参数提供,如我们在上一节。...对于我们之前创建的示例模型,使用以下代码训练模型: model.fit(x_data, y_labels) 使用 Keras 模型进行预测 经过训练的模型可用于使用model.predict()方法来预测值...输入到回归模型的变量称为独立变量或预测变量或特征,而回归模型的输出变量称为因变量或目标。

    3.1K10

    Keras模型转TensorFlow格式及使用

    由于方便快捷,所以先使用Keras来搭建网络并进行训练,得到比较好的模型后,这时候就该考虑做成服务使用的问题了,TensorFlow的serving就很合适,所以需要把Keras保存的模型转为TensorFlow...Keras模型转TensorFlow 其实由于TensorFlow本身以及把Keras作为其高层简化API,且也是建议由浅入深地来研究应用,TensorFlow本身就对Keras的模型格式转化有支持,所以核心的代码很少...原理很简单:原理很简单,首先用 Keras 读取 .h5 模型文件,然后用 tensorflow 的 convert_variables_to_constants 函数将所有变量转换成常量,最后再 write_graph...另外还告诉你冻结了多少个变量,以及你输出的模型路径,pb文件就是TensorFlow下的模型文件。...,因为这里我是对一张图做二分类预测,所以会得到这样一个结果 运行的结果如果和使用Keras模型时一样,那就说明转换成功了!

    1.2K20

    Nat.Genet | 从 DNA 序列预测 RNA-seq 覆盖度作为基因调控的统一模型

    然后输出被反复上采样并通过额外的匹配U-net连接的卷积层处理,以在32 bp分辨率下进行预测。带有'+'符号的连接表示通过残差卷积将前一层的输出与新层的输入相结合。...简而言之,由自注意力块在128 bp分辨率下预测的输出嵌入通过在每个位置复制嵌入向量的方式被上采样两次。...我们解析了命令行输出,并将Pangolin输出的基因标识符与SNP发生的基因进行了匹配。最终的变异效应评分被计算为预测的最大增加和减少的绝对值之和。...对于Pangolin,我们使用其预测的剪接位点概率作为得分,并在所有组织中取平均。...基于CADD的模型使用CADD得分作为特征,而基于Borzoi的模型则使用所有RNA-seq轨迹上的L2得分作为特征,四个模型副本的平均值。

    15810

    Keras中神经网络模型的5阶段生命周期

    在这篇文章中,您将了解在Keras中创建,训练和评估深度学习神经网络的模型生命周期的每一步,以及如何使用训练好的模型进行预测。...概观 以下是Keras神经网络模型生命周期中5个步骤的概述。 定义网络。 编译网络。 拟合网络。 评估网络。 作出预测。...例如,我们可以提取每个层中把各个神经元的输出信号的进行求和的激活函数,并将其作为一个新的层,称为Activation层,再添加到Sequential序列中。...下面是一个展现如何编译定义好的模型的例子,(对于回归问题模型)指定随机梯度下降(sgd)作为优化算法和均方误差(mse)作为损失函数。...具体来说,你了解到: 如何在Keras中定义,编译,拟合,评估和预测神经网络。 如何为分类和回归问题选择激活函数和配置输出层结构。 如何在Keras开发和运行您的第一个多层感知机模型。

    3.1K90

    使用Java部署训练好的Keras深度学习模型

    最后一步是调用模型上的输出方法以生成预测。由于我的模型有一个输出节点,我使用getDouble(0)返回模型的输出。...Jetty设置完整代码:https://github.com/bgweber/DeployKeras/blob/master/JettyDL4J.java 模型端点作为单个类实现,用于加载Keras模型并提供预测...传入的参数(G1,G2,…,G10)被转换为1维张量对象并传递给Keras模型的输出方法。然后将请求标记为已处理,并将预测作为字符串返回。...下一步是转换,它将TableRow对象作为输入,将行转换为1维张量,将模型应用于每个张量,并创建具有预测值的新输出TableRow。...它读取输入记录,从表格行创建张量,应用模型,然后保存记录。输出行包含预测值和实际值。

    5.3K40

    如何用 Keras 为序列预测问题开发复杂的编解码循环神经网络?

    该示例为用户开发自己的编解码LSTM模型提供了基础。 在本教程中,你将学会如何用Keras为序列预测问题开发复杂的编解码循环神经网络,包括: 如何在Keras中为序列预测定义一个复杂的编解码模型。...inference_decoder:对新的源序列进行预测时使用的解码器模型。 该模型对给定的源序列和目标序列进行训练,其中模型以源序列和目标序列的偏移作为输入,对整个目标序列进行预测。...该模型对源和目标序列进行训练,其中模型将目标序列的源和位移版本作为输入,并预测整个目标序列。...因此,在上述情况下,训练过程中会生成以下这样的输入输出对: 这里,你可以看到递归是如何使用模型来构建输出序列。在预测过程中,inference_encoder模型用于对输入序列进行编码。...可以看到,模型正确地预测了每种情况下的输出序列,并且期望值与源序列颠倒的前3个元素相匹配。

    2.3K00

    干货|多重预训练视觉模型的迁移学习

    本文我们展示了基于预训练计算机视觉模型的迁移学习的用途,并使用了keras TensorFlow抽象库。...图像经过网络前馈,将一个特定的层(通常是在最终分类器输出之前的一个层)作为一个representation,其对新任务绝对不会再训练。这种图像-矢量机制的输出,在后续任何任务中几乎都可以使用。...当解压数据集时创建了“CUB_200_2011”文件夹,常量CUB_DIR指向该文件夹中的“image”目录。 ? 首先,我们将用Resnet50模型(参见论文和keras文件)进行特征提取。...Stacking是一个两阶段的算法,在此算法中,一组模型(基础分类器)的预测结果被聚合并传送到第二阶段的预测器中(元分类器)。在这个例子中,每个基本分类器将是一个简单的逻辑回归模型。...然后求出这些输出概率的平均数,并传送到一个线性SVM算法中来提供最终决策。 ?

    1.8K70

    Python深度学习TensorFlow Keras心脏病预测神经网络模型评估损失曲线、混淆矩阵可视化

    TensorFlow作为目前最流行的深度学习框架之一,其GPU版本能够显著提升模型训练的速度和效率(点击文末“阅读原文”获取完整代码数据)。...心脏病作为一种严重的健康问题,其早期预测和诊断对于提高治疗效果和患者生活质量具有重要意义。近年来,深度学习技术在医疗领域的应用日益广泛,特别是在疾病预测和诊断方面。...本研究旨在帮助客户利用TensorFlow Keras库构建一个基于深度学习的心脏病预测模型,并通过实验验证其有效性。...基于TensorFlow Keras的心脏病预测模型构建与评估 该模型采用了一个序列化的网络结构,其中包括特征嵌入层、两个具有ReLU激活函数的隐藏层、一个Dropout层以及一个具有Sigmoid激活函数的输出层...输出层:使用具有单个神经元和Sigmoid激活函数的Dense层作为输出层,用于输出心脏病预测的概率。 模型编译时,采用Adam优化器和二元交叉熵损失函数,并设置监控准确率和验证准确率为评估指标。

    16810
    领券