首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Tensorflow2——使用预训练网络进行迁移学习(Vgg16)

想要将深度学习应用于小型图像数据集,使用预训练网络就是一种常用且高效的方法。预训练网络就是一个保存好的网络,之前已在大型数据集上训练(通常是大规模图像分类任务)。...如果训练的原始数据集足够大且足够通用(如imagenet数据集),那么预训练网络学到的特征的空间层次结构可以有效的作为视觉世界的通用模型,因此这些特征可用于不同的计算机视觉问题。...这种学习到的特征在不同问题之间的可移植性,也是深度学习与其他浅层方法相比的重要优势。使用预训练网络有两种方法,特征提取和微调模型。...微调模型的步骤如下: 1)在已经训练好的基网络上添加自定义网络; 2)冻结基网络; 3)训练所添加的部分; 4)解冻基网络的一些层; 5)联合训练解冻的这些层和添加的部分。...比如上述:训练好的卷积基可以说我们训练好的Vgg网络,我们丢掉后面的分类器,接上我们自己想要的分类器,比如说添加一个Dense层等等,然后再重新训练的时候,不让我们的vgg网络的变量参加训练,只训练我们的分类器

1.6K30

训练集准确率很高,验证集准确率低问题

训练集在训练过程中,loss稳步下降,准确率上升,最后能达到97% 验证集准确率没有升高,一直维持在50%左右(二分类问题,随机概率) 测试集准确率57% 在网上搜索可能打的原因: 1.learning...恭喜你,你压根也分不对,你的validation准确率会一直为0.因为你拿所有的正样本训练,却想判断负样本。 4.数据和标签没有对上 有可能再读取自定义的数据库的时候出现问题,导致数据与标注不对应。...比如第一张图片用第十张的标注 5.你的训练数据太少,validation数据太多,类别也太多 比如4000张训练,1000张validation,300类,这显然就是不合理的。...遇到这种情况,建议: 1.使用别的大的数据集预训练 2.使用DATA augment 3.可以考虑迁移学习 6.最好使用预训练的权重 大多数流行的backone比如resnet都有再imagenet数据集上与训练过...s 另外keras TF1.x可能会出问题,https://github.com/keras-team/keras/pull/9965 10.可能设置了一些参数是不可训练的 在训练语句之前,检查以下你的

3.6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】

    迁移学习可以帮助你在数据不充足的情况下,仍然训练出一个高性能的模型。 节省计算资源: 训练一个深度学习模型需要大量的计算资源和时间。迁移学习通过使用已有的预训练模型,避免了从头开始训练的巨大开销。...迁移学习的流程 选择预训练模型: 首先,选择一个在大型数据集(如 ImageNet)上训练好的模型。这个模型已经学会了很多通用的特征,如图像中的边缘、颜色等。...微调模型: 然后,将这个预训练模型应用到你的任务中。你可以对模型进行“微调”——即保留大部分已经学到的知识,只调整最后几层,或者仅训练最后一层来适应你的任务。...: 训练准确率和验证准确率相近,说明模型在训练集和验证集上表现一致,没有明显的过拟合问题。...过拟合的表现通常是训练准确率高而验证准确率低。 训练损失和验证损失也相近,表明模型的学习在训练集和验证集上都有较好的效果。

    7510

    【深度学习实战】kaggle 自动驾驶的假场景分类

    第四步,设计模型结构 from tensorflow.keras.regularizers import l2 # 加载预训练的VGG16卷积基(不包括顶部的全连接层) vgg16_model = VGG16...首先,加载了预训练的VGG16卷积基(不包括全连接层),并通过设置include_top=False来只使用卷积部分,从而利用其在ImageNet数据集上学到的特征。...通过这种方式,模型能够利用VGG16的预训练卷积基进行特征提取,并通过新添加的全连接层进行分类。...此外,preprocessing_function=preprocess_input使用了VGG16预训练模型的标准预处理函数,确保输入图像的像素范围符合VGG16的训练要求。...在训练过程中,还设置了两个回调函数:ModelCheckpoint,用于保存最好的模型权重文件(best_model.keras),并且只保存验证集上表现最好的模型; EarlyStopping,用于在验证集准确率不再提升时提前停止训练

    8600

    探索迁移学习:通过实例深入理解机器学习的强大方法

    2.使用深度学习框架(如TensorFlow、PyTorch)加载预训练模型。 3.冻结预训练模型的部分或全部层,以保留其学到的特征。 4.在预训练模型基础上添加新的层,以适应目标任务。...示例演示 4.1 使用迁移学习进行图像分类 我们将使用Keras框架来展示迁移学习的一个简单应用。这里,我们将使用预训练的VGG16模型,并将其应用于一个小型的猫狗分类数据集。...加载预训练模型:我们加载预训练的VGG16模型,并冻结其卷积基,这样就不会在训练过程中更新这些层的权重。 构建新的模型:在卷积基之上添加新的全连接层。...训练模型:在训练和验证数据上训练模型,并记录训练过程中的准确率和损失。 可视化训练过程:绘制训练和验证的准确率和损失曲线。...通过这种方式,我们利用VGG16在ImageNet上的预训练知识来改进猫狗分类任务的性能。

    18710

    一文看懂迁移学习:怎样用预训练模型搞定深度学习?

    我只能将训练的准确率控制在6.8%,这是个很不理想的结果。我尝试对隐藏层、隐层中神经元的数量以及drop out速率进行调整,但准确度都没有太大的提升。...因此,我采用了在ImageNet数据集上预先训练好的VGG16模型,这个模型可以在Keras库中找到。 模型的结构如下所示: ?...在VGG16结构的基础上,我只将softmax层的1000个输出改为16个,从而适应我们这个问题的情景,随后重新训练了dense layer。 跟MLP和CNN相比,这个结构的准确率能够达到70%。...同时,使用VGG16最大的好处是大大减少了训练时间,只需要针对dense layer进行训练,所需时间基本可以忽略。 4.怎样使用预训练模型? 当在训练经网络的时候我们的目标是什么?...在手写数字识别中使用预训练模型 现在,让我们尝试来用预训练模型去解决一个简单的问题。 我曾经使用vgg16作为预训练的模型结构,并把它应用到手写数字识别上。

    9.7K61

    别磨叽,学完这篇你也是图像识别专家了

    几个月前,我写了一篇关于如何使用已经训练好的卷积(预训练)神经网络模型(特别是VGG16)对图像进行分类的教程,这些已训练好的模型是用Python和Keras深度学习库对ImageNet数据集进行训练得到的...这些已集成到(先前是和Keras分开的)Keras中的预训练模型能够识别1000种类别对象(例如我们在日常生活中见到的小狗、小猫等),准确率非常高。...不过,在预训练的模型(VGG16、VGG19、ResNet50、Inception V3 与 Xception)完全集成到Keras库之前(不需要克隆单独的备份),我的教程已经发布了,通过下面链接可以查看集成后的模型地址...我们只需要一个命令行参数--image,这是要分类的输入图像的路径。 还可以接受一个可选的命令行参数--model,指定想要使用的预训练模型,默认使用vgg16。...第59行,然后使用预训练的ImageNet权重实例化卷积神经网络。 注意:VGG16和VGG19的权重文件大于500MB。

    2.7K70

    编织人工智能:机器学习发展总览与关键技术全解析

    model.fit(train_images, train_labels, epochs=5) # 输出: 训练准确率 21世纪初期的发展将机器学习推向了新的高度。...Fine-Tuning预训练模型 Fine-Tuning技术允许开发者在预训练的神经网络上进行微调,以适应特定任务。...from tensorflow.keras.applications import VGG16 # 加载预训练的VGG16模型 base_model = VGG16(weights='imagenet..., epochs=5) # 输出: 训练准确率 4.2 强化学习 强化学习是一种使代理能够在与环境的互动中学习如何实现某些目标的方法。...低资源学习 虽然现代机器学习模型在大数据集上训练可以达到令人印象深刻的性能,但在低资源环境下,其性能可能会大大下降。未来的研究可能会专注于开发能够在少量数据上有效学习的算法。

    88220

    基于深度学习的自然场景文字检测及端到端的OCR中文文字识别

    实现功能 文字方向检测 0、90、180、270度检测 文字检测 后期将切换到keras版本文本检测 实现keras端到端的文本检测及识别 不定长OCR识别 本文完整项目代码,模型预训练权重,和数据集获取方式...EndToEnd文本识别网络-CRNN(CNN+GRU/LSTM+CTC) 文字方向检测-vgg分类 基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型....详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23% 模型地址 文字区域检测CTPN 支持CPU、GPU环境,一键部署 文本检测训练参考 https://github.com.../ctpn/ctpn/train_net.py 预训练的vgg网络路径VGG_imagenet.npy将预训练权重下载下来,pretrained_model指向该路径即可, 此外整个模型的预训练权重checkpoint.../train/keras_train/train_batch.py model_path--指向预训练权重位置 MODEL_PATH---指向模型训练保存的位置keras模型预训练权重 pythorch

    2.5K40

    【机器学习】机器学习重要方法——迁移学习:理论、方法与实践

    提高模型性能:在目标任务中数据稀缺或训练资源有限的情况下,迁移学习能够显著提升模型的泛化能力和预测准确性。 加快模型训练:通过迁移预训练模型的参数,可以减少模型训练时间和计算成本。...import VGG16 # 加载预训练的VGG16模型,不包括顶层分类器 base_model = VGG16(weights='imagenet', include_top=False, input_shape...: {test_acc}') 2.2 微调(Fine-Tuning) 微调是迁移学习的一种常用方法,通过在目标任务的数据上继续训练预训练模型的部分或全部层,从而适应目标任务的特性。...以下是一个使用BERT预训练模型进行IMDB情感分析的示例。...import Adam from tensorflow.keras.losses import SparseCategoricalCrossentropy # 加载BERT预训练模型和分词器 tokenizer

    2.3K20

    低资源反应预测场景的自监督分子预训练策略

    Self-Supervised Molecular Pretraining Strategy for Low-Resource Reaction Prediction Scenarios 论文摘要 针对低资源的反应训练样本...,我们构建了一个解决小规模反应预测问题的化学平台。...使用一种称为MAsked Sequence to Sequence (MASS)的自监督预训练策略,Transformer模型可以吸收大约10亿个分子的化学信息,然后对小规模反应预测进行微调。...为了进一步增强模型的预测性能,我们将MASS与反应迁移学习策略相结合。...结果表明,Transformer模型在预测Baeyer-Villiger、Heck、C-C键形成和官能团间转换反应数据集方面的平均准确率分别达到14.07、24.26、40.31和57.69%,标志着该模型在预测低资源反应数据集方面迈出了重要一步

    16720

    ·关于在Keras中多标签分类器训练准确率问题

    [知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。...一、问题描述 关于在CNN中文本预测sigmoid分类器训练准确率的问题? 对于文本多标签多分类问题,目标标签形如[ 0 0 1 0 0 1 0 1 0 1 ]。...在CNN中,sigmoid分类器训练、测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样。如何使sigmoid分类器的准确率的判断标准为全部预测准确即为预测准确。有什么解决方案?...二、问题回复 问题中提出的解决多标签多分类问题的解决方法是正确的。但是要注意几点,keras里面使用这种方式的acc是二进制acc,会把多标签当做单标签计算。 什么意思呢?...举个例子,输入一个样本训练,共有十个标签,其中有两个为1,而你预测结果为全部是0,这时你得到准确率为0.8。最后输出的ac是所有样本的平均。可以看出这个准确率是不可信的。

    2.1K20

    计算机视觉中的深度学习

    包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面广泛应用的一个网络模型...使用预训练卷积网络 在小图像数据集上使用深度学习的一种常见且高效的方法是使用预训练网络。预训练网络是先前在大型数据集上训练的已保存网络,通常是处理大规模图像分类任务。...使用VGG16网络架构,它是ImageNet的简单且广泛使用的convnet架构。 使用预训练网络有两种方法:特征提取和微调。 特征提取 特征提取包括使用先前网络学习的表示从新样本中提取有趣特征。...使用RMSProp优化器以非常低的学习速率执行此操作。使用低学习率的原因是希望限制对正在微调的三个网络层的表示所做的修改的幅度。太大的更新可能会损害这些表示。...例如,这是在VGG16的block3_conv1中激活过滤器0的损失. from keras.applications import VGG16 from keras import backend as

    2.1K31

    【2023年最新】提高分类模型指标的六大方案详解

    这样训练出来的模型能够更好地适应不同场景下的特征,提高模型的泛化能力。 特征选择 特征选择是指从所有特征中选择最具有代表性的特征,以提高模型的准确率和泛化能力。...n_estimators、max_features、max_depth 参数组合,找到最优的组合,提高模型的准确率和泛化能力。...迁移学习 迁移学习是指利用已经存在的模型或者预训练模型作为基础,在新任务上进行微调,以提高模型的分类准确率。...例如,在图像分类任务中,可以利用预训练的模型(如 VGG、ResNet 等)的卷积层作为特征提取器,然后根据新数据集对预训练模型进行微调。 常见的迁移学习方法有特征提取、微调等。...以 CAM 为例,示例代码如下: from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from

    28810

    10个预训练模型开始你的深度学习(计算机视觉部分)

    你可以使用预训练的模型作为基准来改进现有的模型,或者用它来测试对比你自己的模型。这个的潜力和可能性是巨大的。 在本文中,我们将研究在Keras中具有计算机视觉应用的各种预训练模型。...谈到深度学习,解决这个问题的关键技术是图像处理。在这个分类问题中,我们需要使用预训练过的Keras VGG16模型来识别给定图像中的番茄是成熟的还是未成熟的。...为了开发这个模型,我们使用了斯坦福的car数据集,其中包含了196个车型类别的16,185张图片。 使用预训练的VGG16、VGG19和InceptionV3模型对模型进行训练。...在交叉验证数据集上,VGG16网络训练的准确率为66.11%。更复杂的模型,如InceptionV3,由于偏差/方差问题,精度较低。 人脸识别和重建 人脸识别在深度学习领域非常流行。...该预训练模型的设计方法如下: vgg-face-keras:直接将vgg-face模型转换为keras模型 vgg-face-keras-fc:首先将vgg-face Caffe模型转换为mxnet模型

    2.1K20

    十大预训练模型,助力入门深度学习(第1部分 - 计算机视觉)

    大家可以使用预训练模型作为基准来改进现有模型,或者针对它测试自己的模型: 图片来源:Facebook AI 在本文中,将向大家介绍Keras中多种可应用在计算机视觉领域的预训练模型。...从深度学习的角度考虑,这个问题的首选技术是基于深度学习的图像处理。在这个分类问题中,我们可以使用预训练的Keras VGG16模型来识别给定图像中的番茄是成熟的还是未成熟。...使用预训练的VGG16,VGG19和InceptionV3模型训练模型。VGG网络的特点在于其结构简单,仅使用3×3卷积层堆叠起来以增加深度。16和19代表网络中的weight layers。...由于数据集很小,最简单的模型,即VGG16,是最准确的。使用交叉验证法训练VGG16网络的准确率达到66.11%。由于偏差/方差问题,像InceptionV3这样的更复杂的模型可能并不会太准确。...这种预训练模型是通过以下方法设计的: vgg-face-keras:直接将vgg-face模型转换为keras模型 vgg-face-keras-fc:首先将vgg-face Caffe模型转换为mxnet

    94740

    对比复现34个预训练模型,PyTorch和Keras你选谁?

    机器之心编辑 参与:思源、张倩 初学者该用什么样的 DL 架构?当然是越简单越好、训练速度越快越好、测试准确率越高越好!那么我们到底该选择 PyTorch 还是 Keras 呢?...本文主要从抽象程度和性能两个方面对比 PyTorch 与 Keras,并介绍了一个新的基准,它复现并对比了两个框架的所有预训练模型。...在这个项目中,作者用两个框架一共复现了 34 个预训练模型,并给出了所有预训练模型的验证准确率。所以该项目不仅能作为对比依据,同时还能作为学习资源,又有什么比直接学习经典模型代码更好的方法呢?...预训练模型不是已经可以复现了吗? 在 PyTorch 中是这样的。然而有些 Keras 用户却觉得复现非常难,他们遇见的问题可以分为三类: 1....一些预训练的 Keras 模型在部署到某个服务器或与其他 Keras 模型一起依次运行时会产生不一致或较低的准确率。 3. 使用批归一化(BN)的 Keras 模型可能并不可靠。

    85750

    对比复现34个预训练模型,PyTorch和Keras你选谁?

    初学者该用什么样的 DL 架构?当然是越简单越好、训练速度越快越好、测试准确率越高越好!那么我们到底该选择 PyTorch 还是 Keras 呢?...本文主要从抽象程度和性能两个方面对比 PyTorch 与 Keras,并介绍了一个新的基准,它复现并对比了两个框架的所有预训练模型。...在这个项目中,作者用两个框架一共复现了 34 个预训练模型,并给出了所有预训练模型的验证准确率。所以该项目不仅能作为对比依据,同时还能作为学习资源,又有什么比直接学习经典模型代码更好的方法呢?...预训练模型不是已经可以复现了吗? 在 PyTorch 中是这样的。然而有些 Keras 用户却觉得复现非常难,他们遇见的问题可以分为三类: 1....一些预训练的 Keras 模型在部署到某个服务器或与其他 Keras 模型一起依次运行时会产生不一致或较低的准确率。 3. 使用批归一化(BN)的 Keras 模型可能并不可靠。

    1.2K20
    领券