首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Levenshtein:计算字符串的编辑距离

这时,Levenshtein距离(又称编辑距离)就显得尤为重要。它衡量的是,将一个字符串转换成另一个字符串所需的最少编辑操作次数,包括插入、删除和替换字符。...示例1:计算Levenshtein距离 假设我们想比较两个字符串的相似度,以下是如何使用python-Levenshtein来计算它们之间的Levenshtein距离的代码: import Levenshtein...(f"'{str1}' 和 '{str2}' 之间的Levenshtein距离为:{distance}") 运行这段代码,你的终端将会显示出两个字符串之间的Levenshtein距离。...在这个例子中,我们使用了Levenshtein.distance函数来进行计算。 示例2:计算相似度比率 除了计算距离外,我们也许对比较两个字符串的相似度比率更感兴趣。...无论是需要计算两个字符串之间的Levenshtein距离,还是比较它们的相似度比率,python-Levenshtein都能满足我们的需求。

9910

Levenshtein Distance(编辑距离)算法与使用场景

什么是Levenshtein Distance Levenshtein Distance,一般称为编辑距离(Edit Distance,Levenshtein Distance只是编辑距离的其中一种)或者莱文斯坦距离...此算法的概念很简单:Levenshtein Distance指两个字串之间,由一个转换成另一个所需的最少编辑操作次数,允许的编辑操作包括: 将其中一个字符替换成另一个字符(Substitutions)。...插入一个字符(Insertions)。 删除一个字符(Deletions)。 下文开始简称Levenshtein Distance为LD Levenshtein Distance公式定义 ?...a ‘g’) Levenshtein Distance动态规划方法 可以使用动态规划的方法去测量LD的值,步骤大致如下: 初始化一个LD矩阵(M,N),M和N分别是两个输入字符串的长度。...通过定义每个操作的成本为1,如果两个字符串不匹配,则对角跳转的代价为1,否则为0,简单来说就是: 如果[i][j]位置的两个字符串相等,则从[i][j]位置左加1,上加1,左上加0,然后从这三个数中取出最小的值填充到

3.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录。...据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。...许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。   ...用这个算法可以直接计算出两个字符串的“编辑距离”。所谓编辑距离,是指一个字符串,每次只能通过插入一个字符、删除一个字符或者修改一个字符的方法,变成另外一个字符串的最少操作次数。...这就引出了第一种方法:计算两个字符串之间的编辑距离。稍加思考之后发现,不能用输入的关键字直接与句子做匹配。你必须从句子中选取合适的长度后再做匹配。把结果按照距离升序排序。

    6.5K61

    python 各类距离公式实现

    编辑距离(Edit Distance) 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。...编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。...包可以方便的计算编辑距离 包的安装: pip install python-Levenshtein 我们来使用下: # -*- coding:utf-8 -*- import Levenshtein...(texta,textb) 接下来重点介绍下保重几个方法的作用: Levenshtein.distance(str1, str2) 计算编辑距离(也称Levenshtein距离)。...优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。

    7.8K20

    机器学习中“距离与相似度”计算汇总

    在LSH算法汉明距离也有重要的应用。与汉明距离比较相近的是编辑距离。...,可以得到它的几个特点如下: 两点之间的马氏距离与原始数据的测量单位无关(不受量纲的影响) 标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同 可以排除变量之间的相关性的干扰...编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。...包可以方便的计算编辑距离,包的安装:pip install python-Levenshtein import Levenshtein texta = 'Coggle' textb = 'Google'...print Levenshtein.distance(texta,textb) 接下来重点介绍下保重几个方法的作用: Levenshtein.distance(str1, str2) 计算编辑距离(也称

    3.3K10

    机器学习实战总结(1) K-邻近算法

    计算已知类别数据集中的点与当前点之间的距离; 按照距离递增次序排序; 选取与当前距离最小的k个点; 确定前k个点所在类别的出现频率; 返回前k个点出现频率最高的类别作为当前点的预测分类; 3 常见距离公式...3.2 曼哈顿距离 ? 3.3 余弦相似度 ? 3.4 Levenshtein距离 莱文斯坦距离,又称Levenshtein距离,是编辑距离的一种。...指两个字串之间,由一个转成另一个所需的最少编辑操作次数。允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。...si为xi的标准差,如果协方差矩阵为单位矩阵,马哈拉诺比斯距离就简化为 欧氏距离。...讲了这么多,KNN常用的距离公式是欧式距离和曼哈顿距离,但是也希望大家记住其他的距离公式,面试的时候通常也会考察,另外文本相似性也会用到其他距离公式。

    87230

    如何实现拼写纠错功能

    通常有两种方法:一种是求两个字符串的编辑距离,编辑距离越小,两个字符串越相近。另一种是求两个子符串的最长公共子串长度,长度越大,两个字符串越相近。...先考虑如何人脑如何有效的识别编辑距离: facbok (字符串a) facebook (字符串b) 初始编辑距离为0,分别遍历两个字符串,如果一样,则指针 index 后移,如果不一样,有以下三种情况:...1、在字符串 a (或字符串b) 中 index 处的字符删除,编辑距离 +1,然后比较 a[index+1] 与 b[index] 2、在字符串 a (或字符串b) 中,a[index]前的位置插入一个字符...,编辑距离 +1,然后比较 a[index] 与 b[index+1] 3、在字符串 a (或字符串b) 中,a[index]的位置替换一个字符,编辑距离+1,然后比较 a[index+1] 与 b[index...状态转移 字符 f = f ,因此单元格 B2 的值为 0 ,相应的 f 与 fa 的编辑距离为 1 因此 C2 的位置是 1,同理可得第 1 行和第 A 列的编辑距离。

    1.4K20

    Python编程:如何计算两个不同类型列表的相似度

    与数字类型相似度不同,比较字符串类型的相似度需要使用特定的算法。...常见的算法包括Levenshtein距离、Jaccard相似度和编辑距离等。接下来,我们将介绍这些方法,并提供相应的Python代码示例。...Levenshtein距离 Levenshtein距离是指两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。这些编辑操作包括插入、删除和替换字符。...如果您处理的是数字类型的数据,欧几里得距离或曼哈顿距离可能更适合;而如果您处理的是字符串类型的数据,Levenshtein距离或Jaccard相似度可能更合适。建议根据实际情况进行选择。...表格总结 类型 相似度算法 数字类型 欧几里得距离、曼哈顿距离 字符串类型 Levenshtein距离、Jaccard相似度 总结与未来展望 通过本文的学习,读者可以掌握如何计算两个不同类型列表的相似度

    11810

    Oracle 数据库中的数据质量运算符

    FUZZY_MATCH FUZZY_MATCH运算符与语言无关。它确定两个字符串之间的相似性,并支持此处列出的几种算法。...支持的算法有: LEVENSHTEIN 对应于 UTL_MATCH.EDIT_DISTANCE 或 UTL_MATCH.EDIT_SIMILARITY,并给出字符编辑距离或相似性的度量。...DAMERAU_LEVENSHTEIN 距离与经典 LEVENSHTEIN 距离的不同之处在于,除了三种经典的单字符编辑操作(插入、删除和替换)之外,其允许的操作中还包括转置。...它计算以单词(而不是字母)作为匹配单位的两个短语的 LEVENSHTEIN 或编辑距离。 LONGEST_COMMON_SUBSTRING 查找两个字符串之间的最长公共子字符串。...如果指定 UNSCALED,则返回以下之一: LEVENSHTEIN 或编辑距离 JARO_WINKLER 百分比值 N-grams,公共子串的数量 LCS,最长公共子串的长度 select col1,

    23110

    大数据级新闻去重实现 - 1.在线实时方案

    先说说在线方式,基于的技术主要是:Levenshtein距离(编辑距离)和SimHash算法。 Levenshtein距离 莱文斯坦距离,又称Levenshtein距离,是编辑距离的一种。...指两个字串之间,由一个转成另一个所需的最少编辑操作次数。允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。...例如将whale转成whatif: whate (l→t) whati (e→i) whatif (+f) 距离为3 Levenshtein距离算法比较简单并且在字符串比较小的时候比较高效,算法基本思路是...没办法直接判断,一篇文章是否在某一集合中存在与他相似的。也就是说,对于任何一篇文章,我们都要和目前库里面的每篇文章进行Levenshtein距离计算和SimHash海明距离计算。...计算Levenshtein距离,这样也是通过上面simHash分块减少检索与计算量 其他未来可行的方案 我还查询了一些其他方式,例如 分层布隆过滤器论文地址:https://arxiv.org/pdf/

    87320

    PHP语言中我最喜欢的10个函数

    Levenshtein Levenshtein算法是一种用于比较两个字符串的算法,可以计算两个字符串之间的编辑距离。...编辑距离是指将一个字符串转换成另一个字符串所需的最小操作数,操作包括插入、删除和替换等。 这是一个非常酷的功能,可以确定两个相关的单词或短语有多相似。...levenshtein("Dark colour schemes", "are awesome"); // 13 除了计算编辑距离,Levenshtein算法还可以用于字符串相似度比较。...PHP中的levenshtein()函数也支持与字符串相似度相关的计算,代码如下: $s1 = 'Tinywan'; $s2 = 'ShaoBoWan'; $max_length = max(strlen...) * 100; echo $similarity_percent . '%'; 在这段代码中,我们首先通过max()函数计算出两个字符串中较长的那个长度,然后计算编辑距离并将其转换为相似度百分比。

    15710

    腾讯面试题之Java实现莱文斯坦(相似度)算法

    收藏了1万条url,现在给你一条url,如何找出相似的url 使用Levenshtein(莱文斯坦)编辑距离来实现相似度算法 所谓Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数...,操作包括一切你使用的手段将一个字符串转换成另一个字符串,比如插入一个字符、删除一个字符..等等;操作次数越少,说明两个字符串距离Levenshtein Distance越小,表示两个字符串越相似。 ...定义相似度=1-莱文斯坦距离/两个url的最大长度 1、UrlSimilar.java package com.week.similar; import java.io.FileInputStream...*/ public static void levenshtein(String str1,String str2) { //计算两个字符串的长度。...\""+str1+"\"与\""+str2+"\"的比较"); //取数组右下角的值,同样不同位置代表不同字符串的比较 System.out.println("差异步骤:

    1.8K20

    常用样本相似性和距离度量方法

    与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。...马氏距离有很多优点,马氏距离不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。...汉明重量:是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是1的个数,所以11101的汉明重量是4。...编辑距离,又称Levenshtein距离(也叫做Edit Distance),是汉明距离的一般化,指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。...许可的编辑操作包括替换、插入、删除。 杰卡德距离 image.png 相关距离 image.png 余弦距离 image.png 信息熵 image.png

    4.2K40

    你不知道的PHP小技巧之计算文本相似度

    看到这个需求,可能就想到需要使用某种算法来实现,例如:TF-IDF、基于空间向量的余弦算法、最长公共子序列、最小编辑距离算法、Jaccard系数等等。...最小编辑距离算法在PHP中已经有了实现:levenshtein,计算两个字符串之间的编辑距离。...= 1, int $deletion_cost = 1 ): int 编辑距离,是指两个字符串之间,通过替换、插入、删除等操作将字符串 string1 转换成 string2 所需要操作的最少字符数量...; // 21 当编辑距离越小时,相似度就越高。 除了编辑距离,PHP 还直接提供了一个计算两个字符串相似度的函数:similar_text。...匹配字符的数量是通过找到最长的第一个公共子字符串来计算的,然后递归地对前缀和后缀执行此操作。将所有找到的公共子字符串的长度相加。

    1.1K20

    数据对齐-编辑距离算法详解(Levenshtein distance)

    总结一句话:编辑距离就是从一个字符串变到另外一个字符串所需要最小的步骤 一:简介 在信息论、语言学和计算机科学中,Levenshtein distance是用于测量两个字符串之间差异的字符串度量...Levenshtein distance也可以称为编辑距离,尽管该术语也可以表示更大的距离度量系列。 Levenshtein distance与成对字符串对齐密切相关。...上面的变化过程所需要的步数就是最小的步数,所以他们之间的编辑距离就是"3" 3:算法的上下界限 Levenshtein distance数值包含几个上下界限 距离最小是两个字符串之间的长度的差值 距离最大是两个字符串中较长字符串的长度...当且仅当字符串相同时长度为0 当字符串的长度相同时,距离的最大长度是 Hamming distance (下面会介绍一下) 两个字符串之间的距离小于等于与另外一个字符串距离之和(三角形等式 a+b的编辑距离算法 还有很多流行的编辑距离算法,他们和Levenshtein distance算法不同是使用了不同种类的方式去变换字符串 Damerau–Levenshtein distance:

    2.8K20

    理解编辑距离

    顾名思义,编辑距离(Edit distance)是一种距离,用于衡量两个字符串之间的远近程度,方式是一个字符串至少需要多少次基础变换才能变成另一个字符串,可应用在拼写检查、判断 DNA 相似度等场景中。...根据可操作的基础变换不同,可分为以下几种: 莱文斯坦距离(Levenshtein distance):最常见的编辑距离,基础变换包括插入、删除和替换。...但是需要注意一点的是,当每种变换发生时,产生的距离(或者称为代价)并不一定是 1,例如斯坦福大学关于最小编辑距离的课件中,一次替换产生的距离就可能是 2。...至于这个改进有多猛?我做了个实验:假设 s1 和 s2 长度相等,依次测试长度为 1-15 时的不同方法耗时(单位为秒)。结果看下图: ?...=2.21990087×10−7e1.70878196x−1.40410625 还有 一些没说到的: 有时候只求出编辑距离可能还不够,还需要回溯,对两个字符串进行对齐。

    1.3K30

    textdistance:文本相似度计算

    在日常编程中,我们经常需要计算两个字符串之间的相似度 - 比如搜索引擎的模糊匹配、拼写检查、DNA序列比对等场景。...虽然有Levenshtein和FuzzyWuzzy这些知名的字符串匹配库,但今天我要介绍一个更全面、更强大的神器 - textdistance。...这个库最让人惊艳的地方在于,它集成了超过30种文本距离/相似度算法,从简单的编辑距离到复杂的声学算法,应有尽有。...('python', 'python')) # 输出: 1.0每个算法都支持normalized参数,可以将结果标准化到0-1之间:# 标准化的编辑距离print(textdistance.levenshtein.normalized...算法全面,从编辑距离到声学算法一应俱全2. API设计简洁统一,使用体验极佳3. 性能优化到位,支持numpy加速4.

    14110
    领券