数据猿导读 随着数据量的不断增大、接入的系统越来越多,系统加工效率逐步降低,满足内部数据分析和监管机构的监管数据不断增加的需求,农业银行在2013年开始建设完全自主可控的大数据平台。 本篇案例为数据猿
20世纪90年代,使用MPP架构的Netezza和Teradata的数据库设备对Oracle,IBM和Microsoft在anlytics数据库市场的主导地位提出了挑战,并且随着“大数据”的出现以及带有分布式处理的Hadoop的严峻考验。
MPP代表"Massively Parallel Processing",是一种计算机架构,旨在通过分布式处理来实现大规模数据处理和分析。它使用多个处理器或计算节点同时工作,以加快数据处理速度和提高性能。MPP架构通常用于处理海量数据的应用程序,如数据仓库、商业智能和大数据分析。
与数据库的单表基于ER模型构建思路不同,其面向特定业务分析的特性,决定了它的构建需要整合多套数据输入系统,并输出多业务条线的、集成的数据服务能力,需要考虑更全面的因素,包括:
内容来源:2017 年 11 月 18 日,北京偶数科技创始人兼CEO常雷在“第七届数据技术嘉年华”进行《云数据库的本质》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
构思一个主题讨论数据仓库的构建方法论,包括数据仓库的价值、选型、构建思路,随着数据规模膨胀和业务复杂度的提升,大型企业需要构建企业级的数据仓库(数据湖)来快速支撑业务的数据化需求,与传统的数据库构建不通,数据仓库即是OLAP场景,偏于历史数据的存储/分析,用冗余存储换取数据价值;
关注腾讯云大学,了解行业最新技术动态 Greenplum 是全球首个开源、多云分布式数据库,2019年被 Gartner 列为全球十大经典和实时数据分析产品中唯一开源数据库。 和腾讯云大学合作的《六节课快速上手Greenplum》已经进行到第五场,在前四场的活动中,来自Greenplum社区和原厂的专家们分别为大家介绍了Greenplum的安装与部署,Greenplum备份、安全与高可用,生态与工具,和快速调优等的干货内容,相关PPT欢迎前往Greenplum中文社区网站下载页面获取。 第五堂课的主题是G
Snova为您提供简单、快速、经济高效的PB级云端数据仓库解决方案。借助于Snova,您可以在数分钟内创建拥有数百节点的企业级云端数据仓库,并高效的完成日常维护工作;也可以使用丰富的Postgre开源生态工具,实现对Snova中海量数据的即时查询分析、ETL处理及可视化探索;还可以借助其云端数据无缝集成特性,轻松分析位于COS、CDB、ES等数据引擎上的PB级数据。
【大数据100分】南大通用CTO武新:大数据架构及行业大数据应用〖大数据中级教程〗 主讲嘉宾:武新 主持人:中关村大数据产业联盟 副秘书长陈新河 承办:中关村大数据产业联盟 武新,南大通用高级副总裁兼CTO,法国奥尔良大学和法国国家科研中心博士;南大通用GBASE系列数据库产品的总设计师。在著名的甲骨文公司任职12年,是世界顶级的Oracle数据库专家。2010年获得中组部实施的国家“千人计划”荣誉(海外高层次人才引进计划),是国内基础软件行业唯一入选的数据库技术专家。对目前最新兴的列存储技术、压缩技术
Snowflake 是在 Cloud 之上开发的基于云的数据仓库平台,截至目前,亚马逊网络服务 (AWS)、微软 Azure 和谷歌云等流行的云提供商都在支持 Snowflake。
随着数据量的增大,传统数据库如Oracle、MySQL、PostgreSQL等单实例模式将无法支撑大量数据的处理,数据仓库采用分布式技术成为自然的选择。 6.2.1 MPP的概念 在讨论MPP DB之前,我们先把MPP本身的概念搞清楚。MPP是系统架构角度的一种服务器分类方法。 从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构(Symmetric Multi-Processor,SMP)、非一致存储访问结构(Non-Uniform Memory Access,NUMA),以及海量并行处
在以上的架构中可以看出Greenplum主要是由Master和Segment组成的,Master承担生成查询计划并派发汇总执行结果,Segment是执行查询计划及数据储存管理。集群可以直接加载外部的数据。
大数据经过反复炒作之后,慢慢的降温下来。大家不再大谈几个v了,落地到企业会发现,大部分场景还是传统的数据仓库的替换。今天梳理下数据仓库的使用场景,以及需要的技术。 1,先谈下数据仓库准确的概念是什么? 数据仓库 ,由数据仓库之父比尔·恩门(Bill Inmon)于1990年提出,主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,作一有系统的分析整理,以利各种分析方法如联机分析处理(OLAP)、数据挖掘(Data Mining)之进行
从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构 (SMP : Symmetric Multi-Processor) ,非一致存储访问结构 (NUMA : Non-Uniform Memory Access) ,以及海量并行处理结构 (MPP : Massive Parallel Processing) 。它们的特征分别描述如下:
2020年12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。
一时间,似乎所有与数据库有关的厂商都在提“湖仓一体”,仅从百度新闻搜索查询到权重较高的媒体文章就至少有150多篇。随着企业数字化转型进入深水区,越来越多的企业视“湖仓一体”为数字变革的重要契机,如今湖仓一体受到前所未有的关注。
随着云时代的到来,数据库也开始拥抱云数据库时代,各类数据库系统(OLTP、OLAP、NoSQL等)在各内外云平台(AWS、Azure、阿里云)百花齐放,有开源的MySQL、PostgreSQL、MongoDB,传统数据库厂商的SQLServer、Oracle,云厂商自研的Aurora、Redshift、PolarDB、AnalyticDB、AzureSQL等。有些数据库还处于Cloud Hosting阶段,仅仅是将原有架构迁移到云主机上,利用了云的资源。有些数据库则已经进入了Cloud Native阶段,基于云平台IAAS层的基础设施,构建弹性、serverless、数据共享等能力。
对于大数据给企业带来的价值,已经毋庸置疑。在国内,银行业应该是IT建设更为领先的行业之一。特别中、农、工、建四大银行,更是走在整个银行业的前面。那么,他们对于大数据是如何看待的?在这四大银行,大数据的
我们一直在追赶续期的迭代。在过去十年中,我们看到了数据处理技术突破性技术进步后的突破性进展,并且在2015年我们已经到了Spark的时代。
文:何鸿凌 主持人:中关村大数据产业联盟 副秘书长 陈新河 主讲人:何鸿凌 承办:中关村大数据产业联盟 何鸿凌,中国移动集团公司业务支撑系统部项目经理,高级工程师。1978年生人,2001年获得重庆邮电大学计算机应用学士学位,2014年获得重庆大学软件工程硕士学位。工信部和人社部认证的高级程序员、系统分析师、网络分析师。CCF大数据专委会成员、TDWI会员。2001年进入重庆移动负责经营分析系统建设、维护、运营和应用。2006年进入中国移动集团公司,负责全网经营分析系统的规划、规范和技术架构。现在负责中国
导语 | 分析型数据仓库经历了共享存储、无共享MPP、SQL-on-Hadoop几代架构的演进,随着云计算的普及,传统的数据仓库架构在资源弹性,成本等方面已经很难适应云原生的要求。本文由偶数科技 CEO,腾讯云TVP 常雷在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」 的《新一代云原生数据仓库的应用》演讲分享整理而成,为大家详细剖析新一代云原生数据仓库的架构、原理和实现技术,以及如何充分应用云原生数据仓库的特点来实现云上大数据应用。 点击可观看精彩演讲视频
Greenplum是老牌的MPP数据仓库,查询稳定性很强,SQL支持非常全面(支持ANSI SQL 2008和SQL OLAP 2003扩展;支持ODBC和JDBC应用编程接口。完善的标准支持使得系统开发、维护和管理都大为方便。),基于PostgreSQL构建而成,主要面向结构化数据OLAP计算,Greenplum在6.0版本大大的提高了对OLTP的支持,tpcb性能提升60倍,单节点查询达到80000TPS(Transactions Per Second,数据库每秒处理事务数),插入操作达到18000TPS,更新操作约7000TPS。
中国建设银行信息技术管理部资深经理林磊明 ▼ ▼ 1、银行压力越来越大 从十二五走到十三五期间,银行业面临的各方面的压力越来越大,从我们的年报数字可以看出去年四大行的利润增长基本上趋近于零增长。在这样
数字化时代,数据使用场景呈现多元化趋势,数据规模也随之爆发式增长。海量异构数据的爆发式增长,对数据库的存储和计算能力提出了更高的要求。分析型数据库因其在处理海量实时数据时具有优秀的存算和管理能力,近年来赢得了市场的青睐。
对Teradata大中华区员工来说,公司退出中国早在预料之中,因为,早在2019年就已初现端倪,撑了3年多已属不易。
SQL Server 2012致力提供大规模且低成本的分析数据和数据仓库解决方案,并保证实现规模化和灵活性。在大数据时代Microsoft也做出了一些完善。 结构化、非结构化、实时数据 ●支持多格式数据的平台:完整的平台可支持结构化、非结构化和实时的数据。SQL Server 2012支持可伸缩的可伸缩的关系型数据库和数据仓库产品的结构化数据。值得一提的是,在SQL Server 2012中还添加了对企业级Hadoop分布式非结构化数据的支持。同时StreamInsight作为Microsoft推出的流数据
大数据是海量数据模式下,对数据进行存储以及计算的一种架构,或者说生态。数据量达到这个级别,单机数据库、MPP架构都无法支撑的时候,只能寻求大数据架构去做解决。
数据湖仓库架构的普及性持续增加,这一点毫不令人惊讶。它们无缝集成数据湖和数据仓库的优点的潜力,承诺为数据处理和分析带来变革性的体验。然而,这种方法也存在缺陷。本文检验了这些挑战,如查询性能和高成本,并确定了帮助数据湖仓库解决它们的新技术。
本期嘉宾 简丽荣 酷克数据联合创始人兼CEO 简丽荣,北京酷克数据科技有限公司联合创始人兼CEO。2008年毕业于清华大学计算机系本科,2010年获得香港科技大学硕士学位,毕业后曾先后在IBM中国研究院、雅虎北京研发中心和Pivotal中国研发中心从事分布式计算相关研发工作。简丽荣是开源数据仓库Greenplum Database的contributor和Apache HAWQ的创始committer,在云计算及数据库领域长期保持着敏锐的洞察力和判断力。 主持人 田超 腾讯云企业中心总经理 田超,腾
随着大数据在越来越多的企业当中落地,企业要开展大数据相关的业务,那么首先要搭建起自身的数据平台。而企业搭建大数据平台,往往需要结合成本、业务、人员等各方面的因素,来规划数据平台建设方案。今天我们就来聊聊数据平台建设的几种方案。
这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂商也纷纷推出自己的数据湖、云数据仓库、湖仓一体产品。
对于离线场景,最典型的就是数据仓库。它和传统的数仓不太一样。因为传统数仓它只能解决中小规模的数据存储与分析问题。大数据这一块要能承接海量的数据。
导语 | 本文推选自腾讯云开发者社区-【技思广益 · 腾讯技术人原创集】专栏。该专栏是腾讯云开发者社区为腾讯技术人与广泛开发者打造的分享交流窗口。栏目邀约腾讯技术人分享原创的技术积淀,与广泛开发者互启迪共成长。本文作者是腾讯后台开发工程师叶强盛。 引言 这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂
2021 Gdevops全球敏捷运维峰会 - 广州站,将在5月28日盛大举办。Gdevops经过创办6年成功举行近20场大会的经验积淀,于本次峰会打磨精选出最贴合当下运维痛难点及运维转型趋势热点的议题,本文带大家先睹为快。 腾讯大讲堂·限时专属优惠 报名 福利一: 扫描下方二维码,关注腾讯大讲堂,回复“Gdevops全球敏捷运维峰会·广州站”,就有机会抽取免费门票 福利二: 限时特价优惠门票有限,码上报名 运维主题看点 讲师介绍:现任职新炬网络副总裁,多年跨国大型IT企业的团队管理、销售和市
美团外卖数据仓库通过MOLAP+ROLAP双引擎模式来适配不同应用场景。MOLAP引擎使用了Apache Kylin。ROLAP我们经过综合考虑,选择了Apache Doris。本文将介绍Doris在美团外卖数仓的实践。
学习数仓的时候,可能一开始总是被一些英文缩写名字迷惑,OLAP MPP架构 KAPPA架构 ODS等等,这篇文章就来梳理一下这些基本概念。
美团外卖数据仓库技术团队负责支撑日常业务运营及分析师的日常分析,由于外卖业务特点带来的数据生产成本较高和查询效率偏低的问题,他们通过引入Apache Doris引擎优化生产方案,实现了低成本生产与高效查询的平衡。并以此分析不同业务场景下,基于Kylin的MOLAP模式与基于Doris引擎的ROLAP模式的适用性问题。希望能对大家有所启发或者帮助。
技术最终为业务服务,没必要一定要追求先进性,各个企业应根据自己的实际情况去选择自己的技术路径。 它不一定具有通用性,但从一定程度讲,这个架构可能比BAT的架构更适应大多数企业的情况,毕竟,大多数企业,数据没到那个份上,也不可能完全自研,商业和开源的结合可能更好一点,权当抛砖引玉。 大数据平台架构的层次划分没啥标准,以前笔者曾经做过大数据应用规划,也是非常纠结,因为应用的分类也是横纵交错,后来还是觉得体现一个“能用”原则,清晰且容易理解,能指导建设,这里将大数据平台划分为“五横一纵”。
回顾数据仓库的发展历程,大致可以将其分为几个阶段:萌芽探索到全企业集成时代、企业数据集成时代、混乱时代--"数据仓库之父"间的论战、理论模型确认时代以及数据仓库产品百家争鸣时代。查看原文
前面已经给大家讲了《从0到1搭建大数据平台之数据采集系统》、《从0到1搭建大数据平台之调度系统》,今天给大家讲一下大数据平台计算存储系统。大数据计算平台目前主要都是围绕着hadoop生态发展的,运用HDFS作为数据存储,计算框架分为批处理、流处理。
一、SQL on Hadoop 过去五年里,许多企业已慢慢开始接受Hadoop生态系统,将它用作其大数据分析堆栈的核心组件。尽管Hadoop生态系统的MapReduce组件是一个强大的典范,但随着时间的推移,MapReduce自身并不是连接存储在Hadoop生态系统中的数据的最简单途径,企业需要一种更简单的方式来连接要查询、分析、甚至要执行深度数据分析的数据,以便发掘存储在Hadoop中的所有数据的真正价值。SQL在帮助各类用户发掘数据的商业价值领域具有很长历史。 Hadoop上的SQL支持一开始是Apache Hive,一种类似于SQL的查询引擎,它将有限的SQL方言编译到MapReduce中。Hive对MapReduce的完全依赖会导致查询的很大延迟,其主要适用场景是批处理模式。另外,尽管Hive对于SQL的支持是好的开端,但对SQL的有限支持意味着精通SQL的用户忙于企业级使用案例时,将遇到严重的限制。它还暗示着庞大的基于标准SQL的工具生态系统无法利用Hive。值得庆幸的是,在为SQL on Hadoop提供更好的解决方案方面已取得长足进展。 1. 对一流的SQL on Hadoop方案应有什么期待 下表显示了一流的SQL on Hadoop所需要的功能以及企业如何可以将这些功能转变为商业利润。从传统上意义上说,这些功能中的大部分在分析数据仓库都能找到。
内容来源:2017 年 10 月 21 日,深奇智慧联合创始人高扬在“PostgreSQL 2017中国技术大会”进行《基于Greenplum,postgreSQL的大型数据仓库实践》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
MariaDB ColumnStore利用分布式列式存储和大规模并行处理(MPP)共享无架构扩展了MariaDB企业服务器,将其转变为独立或分布式数据仓库,用于复杂SQL查询和高级分析,而无需创建任何索引。
数据仓库里面存储引擎是非常重要的,存储引擎的好坏,基本决定了整个数仓的基础。 kudu目标 cloudera公司最近发布了一个kudu存储引擎。按照cloudera的想法,kudu的出现是为了解决,hbase,parquet不能兼顾分析和更新的需求,所以需要一个新的存储引擎可以同时支持高吞吐的分析应用以及少量更新的应用。cloudera 的设计目标是:(http://blog.cloudera.com/blog/2015/09/kudu-new-apache-hadoop-storage-for-fast
原来的主库读写压力都很大,最后做了读写分离,读节点的压力开始激增,而且随着业务的扩展,统计查询的需求越来越多,比如原来是有10个查询,现在可能变成了30个,这样一来统计压力变大,导致系统响应降低,从而导致从库的延迟也开始变大。最大的时候延迟有3个小时,按照这种情况,统计的意义其实已经不大了。
大家好呀!这里是爱学习的 Guide!今天给大家科普一个速度快到飞起的数据库——ClickHouse。
当前数据仓库的主流架构:分为两个方向一个是 hadoop 体系,一个是 MPP 数据库
12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。 数据仓库从1991年被正式提出,历经近30年的发展历程,企业对数据仓库的重要性感知愈加强烈,同时数据仓库在企业端越来越走向成熟和理性。 “企业不再停留
<数据猿导读> 中国移动大数据总架构师段云峰在2016年中国信息通信大数据大会上发表了以“无所不在的大数据分析”为主题的演讲.他主要给大家分享了中国移动在系统架构方面的内容,包括移动大数据演进的历程,
简单是最好的策略。 数据服务公司如何构建数据仓库?我曾担任一家平台的实时计算工程师,该平台旨在允许用户搜索公司的业务数据、财务和法律详细信息。已采集300多个维度、3亿+实体信息。我和我的同事的职责是确保这些数据的实时更新,以便我们能够为我们的注册用户提供最新的信息。这就是我们数据仓库面向客户的功能。除此之外,它还需要支持我们内部营销和运营团队的临时查询和用户细分,这是随着我们业务的增长而出现的新需求。
领取专属 10元无门槛券
手把手带您无忧上云