首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    HAWQ技术解析(一) —— HAWQ简介

    一、SQL on Hadoop 过去五年里,许多企业已慢慢开始接受Hadoop生态系统,将它用作其大数据分析堆栈的核心组件。尽管Hadoop生态系统的MapReduce组件是一个强大的典范,但随着时间的推移,MapReduce自身并不是连接存储在Hadoop生态系统中的数据的最简单途径,企业需要一种更简单的方式来连接要查询、分析、甚至要执行深度数据分析的数据,以便发掘存储在Hadoop中的所有数据的真正价值。SQL在帮助各类用户发掘数据的商业价值领域具有很长历史。 Hadoop上的SQL支持一开始是Apache Hive,一种类似于SQL的查询引擎,它将有限的SQL方言编译到MapReduce中。Hive对MapReduce的完全依赖会导致查询的很大延迟,其主要适用场景是批处理模式。另外,尽管Hive对于SQL的支持是好的开端,但对SQL的有限支持意味着精通SQL的用户忙于企业级使用案例时,将遇到严重的限制。它还暗示着庞大的基于标准SQL的工具生态系统无法利用Hive。值得庆幸的是,在为SQL on Hadoop提供更好的解决方案方面已取得长足进展。 1. 对一流的SQL on Hadoop方案应有什么期待 下表显示了一流的SQL on Hadoop所需要的功能以及企业如何可以将这些功能转变为商业利润。从传统上意义上说,这些功能中的大部分在分析数据仓库都能找到。

    02
    领券