首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

针对SAS用户:Python数据分析库pandas

Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。 下面的单元格使用Python None对象代表数组中的缺失值。相应地,Python推断出数组的数据类型是对象。...并不是所有使用NaN的算数运算的结果是NaN。 ? 对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。SAS排除缺失值,并且利用剩余数组元素来计算平均值。 ?...缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...5 rows × 27 columns 缺失值替换 下面的代码用于并排呈现多个对象。它来自Jake VanderPlas的使用数据的基本工具。它显示对象更改“前”和“后”的效果。 ?...显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。.

12.1K20

fillna函数用法_fill…with

,‘backfill’, ‘bfill’, None}, default None pad/ffill:用前一个非缺失值去填充该缺失值 backfill/bfill:用下一个非缺失值填充该缺失值...None:指定一个值去替换缺失值(缺省默认这种方式) limit参数:限制填充个数 axis参数:修改填充方向 #导包 import pandas as pd import numpy...] = NaN df2 运行结果: #1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值 df2.fillna(method='ffill') 运行结果: 2.method...= ‘bflii’/’backfill’:用下一个非缺失值填充该缺失值 #2.method = 'bflii'/'backfill':用下一个非缺失值填充该缺失值 df2.fillna(method...='bfill') 运行结果: 四、指定limit参数 #四、指定limit参数 #用下一个非缺失值填充该缺失值 #只填充2个 df2.fillna(method='bfill', limit=2

66110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中使用fillna函数填充NaN值「建议收藏」

    ’, ‘ffill’,‘backfill’, ‘bfill’, None}, default None pad/ffill:用前一个非缺失值去填充该缺失值 backfill/bfill:用下一个非缺失值填充该缺失值...None:指定一个值去替换缺失值(缺省默认这种方式) 1.3 limit参数: 限制填充个数 1.4 axis参数 修改填充方向 补充 isnull 和 notnull 函数用于判断是否有缺失值数据...print ("-------------------------") print (df1) 运行结果: 在这里插入代码片 2.3 使用method参数 1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值...5.0 7.0 2 6 3 1 5.0 7.0 3 5 4 9 5.0 7.0 4 6 5 4 6.0 9.0 2.method = ‘bflii’/‘backfill’:用下一个非缺失值填充该缺失值...3.0 1 4 6 4 5.0 2.0 2 4 9 2 5.0 5.0 3 9 7 3 5.0 5.0 4 6 1 3 5.0 5.0 2.4 使用limit参数 用下一个非缺失值填充该缺失值且每列只填充

    2.5K40

    Python数据科学(六)- 资料清理(Ⅰ)1.Pandas1.资料筛选2.侦测遗失值3.补齐遗失值

    成功爬取到我们所需要的数据以后,接下来应该做的是对资料进行清理和转换, 很多人遇到这种情况最自然地反应就是“写个脚本”,当然这也算是一个很好的解决方法,但是,python中还有一些第三方库,像Numpy...,Pandas等,不仅可以快速简单地清理数据,还可以让非编程的人员轻松地看见和使用你的数据。...Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。...当中axis为0和1时分别代表的含义(axis参数作用方向图示): 3.填补缺失值 用0填补缺失值 df.fillna(0) 用平均数缺失值 df['age'].mean()是age这个字段平均值 df...# 在打开文件的时候,直接把暂无资料替换成缺失值 df = pandas.read_csv('data/house_data.csv', na_values = '暂无资料', index_col =

    2.2K30

    数据科学 IPython 笔记本 7.7 处理缺失数据

    在标记方法中,标记值可能是某些特定于数据的惯例,例如例如使用-9999或某些少见的位组合来表示缺失整数值,或者它可能是更全局的惯例,例如使用NaN(非数字)表示缺失浮点值,这是一个特殊值,它是 IEEE...Pandas 中的缺失数据 Pandas 处理缺失值的方式受到其对 NumPy 包的依赖性的限制,NumPy 包没有非浮点数据类型的 NA 值的内置概念。...NaN:缺失的数值数据 另一个缺失的数据表示,NaN(“非数字”的首字母缩写)是不同的;它是所有系统都识别的特殊浮点值,使用标准 IEEE 浮点表示: vals2 = np.array([1, np.nan...空值上的操作 正如我们所看到的,Pandas 将None和NaN视为基本可互换的,用于指示缺失值或空值。为了促进这个惯例,有几种有用的方法可用于检测,删除和替换 Pandas 数据结构中的空值。...填充空值 有时比起删除 NA 值,你宁愿用有效值替换它们。这个值可能是单个数字,如零,或者可能是某种良好的替换或插值。

    4.1K20

    利用 Pandas 的 transform 和 apply 来处理组级别的丢失数据

    图片来自 Pixabay Pandas 有三种通过调用 fillna()处理丢失数据的模式: method='ffill':ffill 或 forward fill 向前查找非空值,直到遇到另一个非空值...method='bfill':bfill 或 backward fill 将第一个观察到的非空值向后传播,直到遇到另一个非空值 显式值:也可以设置一个精确的值来替换所有的缺失值。...,我们可以用整个样本的平均值填充缺失的值。...男孩和女孩权重的 KDE,我们用组平均值替换缺失值(下面附代码) # PLOT CODE: sns.set_style('white') fig, ax = plt.subplots(figsize=(...按年龄、性别分组的体重 KDE 用各组的平均值代替缺失值 当顺序相关时,处理丢失的数据 ?

    1.9K10

    Pandas缺失数据处理

    好多数据集都含缺失数据,缺失数据有多重表现形式 数据库中,缺失数据表示为NULL 在某些编程语言中用NA表示 缺失值也可能是空字符串(’’)或数值 在Pandas中使用NaN表示缺失值; NaN简介 Pandas...中的NaN值来自NumPy库,NumPy中缺失值有几种表示形式:NaN,NAN,nan,他们都一样 缺失值和其它类型的数据不同,它毫无意义,NaN不等于0,也不等于空串 print(pd.isnull(...NaN)) print(pd.isnull(nan)) 结果: True True 缺失数据的产生:数据录入的时候, 就没有传进来         在数据传输过程中, 出现了异常, 导致缺失         ...填充缺失值 titanic_train['Age'].isnull().sum() # 177 titanic_train['Age'].fillna(0).isnull().sum() # 用0来填充...时序数据的缺失值填充 city_day.fillna(method='bfill')['Xylene'][50:64] # bfill表示使用后一个非空值进行填充 # 使用前一个非空值填充:df.fillna

    11310

    机器学习中处理缺失值的7种方法

    ---- 用平均值/中位数估算缺失值: 数据集中具有连续数值的列可以替换为列中剩余值的平均值、中值或众数。与以前的方法相比,这种方法可以防止数据丢失。...替换上述两个近似值(平均值、中值)是一种处理缺失值的统计方法。 ? 在上例中,缺失值用平均值代替,同样,也可以用中值代替。...不考虑特征之间的协方差。 ---- 分类列的插补方法: 如果缺少的值来自分类列(字符串或数值),则可以用最常见的类别替换丢失的值。如果缺失值的数量非常大,则可以用新的类别替换它。 ?...Python中朴素贝叶斯和k近邻的sklearn实现不支持缺失值。 这里可以使用的另一个算法是RandomForest,它对非线性和分类数据很有效。...「缺点」: 只作为真实值的代理 ---- 使用深度学习库-Datawig进行插补 这种方法适用于分类、连续和非数值特征。

    7.9K20

    Kaggle知识点:缺失值处理

    为了便利,一个好的c的设置方式是现有非缺失数据X的均数。...平均值填充(Mean/Mode Completer) 将初始数据集中的属性分为数值属性和非数值属性来分别进行处理。...method:表示填充缺失值的方法,method 的取值为{’pad’,’ffill’,’backfill’,’bfill’,None}。pad/ffill:用前一个非缺失值去填充该缺失值。...backfill/bfill:用下一个非缺失值去填充该缺失值。None:指定一个值去替换缺失值(缺省默认这种方式)。 axis:指定填充方向,当 axis=1 按列填充,axis=0 按行填充。...'/'pad':用前一个非缺失值去填充该缺失值 df2 = df.fillna(method='ffill') # 将exam列的缺失值用均值替换 exa_mea = df['exam'].fillna

    2K20

    Python数据处理从零开始----第三章(pandas)②处理缺失数据

    在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值。常见的缺失值处理方式有,过滤、填充。...缺失值的判断 pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...DataFrame删除缺失值相对于Series而言就要复杂一些,也许有的时候你是想删除含有缺失值的行或列,也许有时候你需要删除的是,当整行或整列全为缺失值的时候才删除,好在pandas对于这两种情况都有相对应的处理方法...1、删除含有缺失值的行和列 df.dropna( axis=0, # 0: 对行进行操作; 1: 对列进行操作 how='any' # 'any': 只要存在 NaN 就 drop 掉...通常情况下,也许你会选择用一些特殊值来填充缺失值。下面介绍使用pandas的fillna方法来填充缺失数据。

    1.1K10

    Pandas知识点-缺失值处理

    Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull...对于自定义缺失值,不能用isnull()等三个函数来判断,不过可以用isin()函数来判断。找到这些值后,将其替换成np.nan,数据就只有空值一种缺失值了。...有 ffill,pad,bfill,backfill 四种填充方式可以使用,ffill 和 pad 表示用缺失值的前一个值填充,如果axis=0,则用空值上一行的值填充,如果axis=1,则用空值左边的值填充...bfill 和 backfill 表示用缺失值的后一个值填充,axis的用法以及找不到填充值的情况同 ffill 和 pad 。...pad(axis=0, inplace=False, limit=None): 用缺失值的前一个值填充。 ffill(): 同pad()。 bfill(): 用缺失值的后一个值填充。

    4.9K40

    pandas读取表格后的常用数据处理操作

    这篇文章其实来源于自己的数据挖掘课程作业,通过完成老师布置的作业,感觉对于使用python中的pandas模块读取表格数据进行操作有了更深层的认识,这里做一个整理总结。...fillna函数用于替换缺失值,常见参数如下: value参数决定要用什么值去填充缺失值 axis:确定填充维度,从行开始或是从列开始 limit:确定填充的个数,int型 通常limit参数配合axis...tableline = tabledata['类型'].fillna(value='其他') tabledata['类型'] = tableline print(tabledata) 6、修改某一列,用平均值代替缺失值...这个的思路和上面一个基本一致,区别在于我们需要线求出平均值。...平均值的求解肯定不需要缺失值参与,于是我们先取出某一列不存在的缺失值的所有数据,再取出这一列数据,通过mean函数直接获取平均值。

    2.4K00

    【缺失值处理】拉格朗日插值法—随机森林算法填充—sklearn填充(均值众数中位数)

    填补   4 其他(删除包含缺失行/列,用前/后一行,前后均值替换等) 在进行缺失值填充之前,要先对缺失的变量进行业务上的了解,即变量的含义、获取方式、计算逻辑,以便知道该变量为什么会出现缺失值、缺失值代表什么含义...填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填补下一个特征。...,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填补下一个特征 for i in sortindex:     #构建我们的新特征矩阵和新标签     df = X_missing_reg.../列,用前/后一行,前后均值替换等)  df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 删除包含缺失值的行: ...:  df.fillna(value=10) 用上一行对应位置的值替换缺失值:  df.fillna(axis=0, method='ffill') 用前一列对应位置的值替换缺失值:  df.fillna

    3K10

    30 个小例子帮你快速掌握Pandas

    我们可以使用特定值,聚合函数(例如均值)或上一个或下一个值。 对于Geography列,我将使用最常见的值。 ?...avg = df['Balance'].mean() df['Balance'].fillna(value=avg, inplace=True) fillna函数的method参数可用于根据列中的上一个或下一个值填充缺失值...例如,thresh = 5表示一行必须具有至少5个不可丢失的非丢失值。缺失值小于或等于4的行将被删除。 DataFrame现在没有任何缺失值。...第一个参数是位置的索引,第二个参数是列的名称,第三个参数是值。 19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。...Geography列的内存消耗减少了近8倍。 24.替换值 替换函数可用于替换DataFrame中的值。 ? 第一个参数是要替换的值,第二个参数是新值。 我们可以使用字典进行多次替换。 ?

    10.8K10

    pandas 缺失数据处理大全(附代码)

    所有数据和代码可在我的GitHub获取: https://github.com/xiaoyusmd/PythonDataScience 一、缺失值类型 在pandas中,缺失数据显示为NaN。...缺失值有3种表示方法,np.nan,none,pd.NA。 1、np.nan 缺失值有个特点(坑),它不等于任何值,连自己都不相等。如果用nan和任何其它值比较都会返回nan。...除此之外,还要介绍一种针对时间序列的缺失值,它是单独存在的,用NaT表示,是pandas的内置类型,可以视为时间序列版的np.nan,也是与自己不相等。...df.ffill() >> A B C D 0 a1 b1 1 5.0 1 a1 b1 2 5.0 2 a2 b2 3 9.0 3 a3 b3 4 10.0 原缺失值都会按照前一个值来填充(B列1行,...除了用前后值来填充,也可以用整个列的均值来填充,比如对D列的其它非缺失值的平均值8来填充缺失值。

    2.4K20
    领券