机器学习中的基本数学知识 注:本文的代码是使用Python 3写的。 机器学习中的基本数学知识 线性代数(linear algebra) 第一公式 矩阵的操作 换位(transpose) 矩阵乘法 矩阵的各种乘积 内积 外积 元素积(element-wise product/point-wise product/Hadamard product 加 低等数学 几何 范数(norm) 拉格朗日乘子法和KKT条件 微分(differential) 表示形式 法则 常见导数公式 统计学/概率论 信息论
矩阵中每一个数都和这个常数相乘,这个意义上矩阵除以常数也没问题。不过从解方程的意义上讲,矩阵乘以常数之后还是一样的矩阵。
依照Numpy官方中文文档:https://www.numpy.org.cn/reference/routines/linalg.html
numpy可以说是Python运用于人工智能和科学计算的一个重要基础,近段时间恰好学习了numpy,pandas,sklearn等一些Python机器学习和科学计算库,因此在此总结一下常用的用法。
吴恩达老师课程原地址: https://mooc.study.163.com/smartSpec/detail/1001319001.htm
从格罗滕迪克那里,我学习到不要以证明过程的难度为荣:困难意味着我们尚未理解。也就是说我们要能绘制出让证明过程显而易见的图景。 ——著名数学家 Pierre Deligne
NumPy 是Python数据分析必不可少的第三方库,NumPy 的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型。如今,NumPy 被Python其它科学计算包作为基础包,已成为 Python 数据分析的基础,可以说 NumPy 就是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。
numpy对于多维数组的运算在默认情况下并不使用矩阵运算,进行矩阵运算可以通过matrix对象或者矩阵函数来进行;
深度学习背后的核心有标量、向量、矩阵和张量这 4 种数据结构,可以通过使用这些数据结构,以编程的方式解决基本的线性代数问题
现在推荐系统,网络搜索和在线广告的数据大多是分类的,并包含多个字段,有一个典型的方法将他们转化成高维稀疏二进制特征表示就是通过one-hot编码。对于这些高维稀疏的特征,传统模型可能会限制它们从数据中挖掘浅层模式的能力,即低阶组合特征,另一方面,像深度神经网络这样的深度模型由于巨大的特征空间而不能直接应用于高维输入。所以本文提出了PNN这个模型,其中的embedding层学习种类特征的分布式表示,product层捕获种类特征之间的交互特征(学习filed之间的交互特征),全连接层捕获高阶交互特征。
数组可以看作是带有多个下标类型相同的元素集合。 维度向量(dimension vector)是一个正整数向量。如果它的长度为k,那么该数组就是k-维的。
最近我以电子版的形式出了第二本书《Python 从入门到入迷》,然后定期更新书中的内容,最先想到的便是 einsum。
NumPy包括几个常量: np.e、np.pi、 np.inf、 np.nan、np.NINF、np.PZERO & np.NZERO、np.euler_gamma、np.newaxis
【导读】einsum 全称 Einstein summation convention(爱因斯坦求和约定),又称为爱因斯坦标记法,是爱因斯坦 1916 年提出的一种标记约定,本文主要介绍了einsum 的应用。
mesh 是什么? mesh 是决定一个物体形状的东西。例如在二维中可以是正方形、圆形、三角形等;在三维中可以是正方体、球体、圆柱体等。
概括地说,向量的内积(点乘/数量积)。对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b:
作者:jediael_lu
在NumPy中,多维数组除了基本的算数运算之外,还内置了一些非常有用的函数,可以加快我们的科学计算的速度。
ONN: Operation-Aware Neural Network for User Response Prediction
最近两周,你有没有沉迷欧洲杯?乐乐就不一样了——乐乐沉迷优化产品 10个新特性新鲜出炉,涉及直播、轻享、K吧、考试等多个应用,来看看都有啥: 支持通过excel导入观看名单 电脑端人员选择器全新升级,支持通过excel导入的方式设置直播观看权限名单,让管理员更好做权限设置。 手机端直播延迟降低至毫秒级别 在电脑端零延迟体验升级后,手机端直播也接入“快直播”服务,延迟降低至毫秒级内了! 新观众可浏览历史留言 过去,直播观众进入直播间,看不到历史留言,现在,进入直播间的观众可以浏览历史5
# 来源:NumPy Essentials ch3 向量化 import numpy as np # NumPy 数组的运算是向量化的 # 数组和标量运算是每个元素和标量运算 x = np.array([1, 2, 3, 4]) x + 1 # array([2, 3, 4, 5]) # 数组和数组运算是逐元素运算 y = np.array([-1, 2, 3, 0]) x * y array([-1, 4, 9, 0]) # 需要计算内积的时候 # 使用np.dot np
Numpy(Numeric Python)是一个用python实现的科学计算的扩展程序库。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。
作者:乐雨泉(yuquanle),湖南大学在读硕士,研究方向机器学习与自然语言处理。
本文介绍的是IJCAI-19的一篇论文,题目为《CFM: Convolutional Factorization Machines for Context-Aware Recommendation》,将卷积神经网络和因子分解机FM相结合,提出了CFM模型,一起来学习下! 论文下载地址:https://www.ijcai.org/Proceedings/2019/0545.pdf
教程地址:http://www.showmeai.tech/tutorials/33
1、NumPy 是一个功能强大的第三方库(需要自己安装),主要用于对多维数组执行计算;
📀PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队开发,专为深度学习研究和开发而设计。PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。在 PyTorch 中,张量以 "类" 的形式封装起来,对张量的一些运算、处理的方法被封装在类中。
这是一篇关于特征交叉方式处理的论文,实践的价值很大,二阶的特征交叉能为我们模型带来非常大的帮助,因为二阶的特征交叉可以很好地捕捉特征之间的两两交叉关系,但在实践生产中我们做的最多的就是直接做向量间的内积,最典型的就是工业界常用的双塔模型,用户侧作为一端,商品侧作为另一端,然后两端的特征进行内积,最后直接相加或者吧两两点积的结果输入到下一层,不过在非常多的工作中,我们也发现两两向量的内积会丢失非常多的信息,我们也发现在很多情况下,我们对两个向量做外积,然后把外积展开输入到下一层的效果要比内积的效果更好,但也会带来一个问题,就是计算量和存储量会爆炸,因而工业界更加倾向于前者,那么有没有一种其他的方法,使我们能在可以接受的时间复杂度,然后又可以拿到相较于内积更好的结果呢?这就是本文的核心!!!
在深入探讨 Python 之前,简要地谈谈笔记本。Jupyter 笔记本允许在网络浏览器中本地编写并执行 Python 代码。Jupyter 笔记本使得可以轻松地调试代码并分段执行,因此它们在科学计算中得到了广泛的应用。另一方面,Colab 是 Google 的 Jupyter 笔记本版本,特别适合机器学习和数据分析,完全在云端运行。Colab 可以说是 Jupyter 笔记本的加强版:它免费,无需任何设置,预装了许多包,易于与世界共享,并且可以免费访问硬件加速器,如 GPU 和 TPU(有一些限制)。 在 Jupyter 笔记本中运行教程。如果希望使用 Jupyter 在本地运行笔记本,请确保虚拟环境已正确安装(按照设置说明操作),激活它,然后运行 pip install notebook 来安装 Jupyter 笔记本。接下来,打开笔记本并将其下载到选择的目录中,方法是右键单击页面并选择“Save Page As”。然后,切换到该目录并运行 jupyter notebook。
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
python数据科学基础库主要是三剑客:numpy,pandas以及matplotlib,每个库都集成了大量的方法接口,配合使用功能强大。平时虽然一直在用,也看过很多教程,但纸上得来终觉浅,还是需要自己系统梳理总结才能印象深刻。本篇先从numpy开始,对numpy常用的方法进行思维导图式梳理,多数方法仅拉单列表,部分接口辅以解释说明及代码案例。最后分享了个人关于axis和广播机制的理解。
本文来自英国伦敦大学学院博士张伟楠在携程技术中心主办的深度学习Meetup中的主题演讲,介绍了深度学习在在Multi-field Categorical(多字段分类)数据集上的应用,涉及FM和FNN等
张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 𝑛𝑛 维空间内,有 𝑛𝑟𝑛𝑟 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。𝑟𝑟 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。
http://blog.csdn.net/pipisorry/article/details/39087583
不仅如此,和其它pytorch中的函数一样,torch.einsum是支持求导和反向传播的,并且计算效率非常高。
CTR(Click-Through-Rate)即点击通过率,是互联网广告常用的术语,指网络广告(图片广告/文字广告/关键词广告/排名广告/视频广告等)的点击到达率,即该广告的实际点击次数除以广告的展现量。
外积,又称叉积,是向量代数(解析几何)中的一个概念。两个向量v1(x1, y1)和v2(x2, y2)的外积v1×v2=x1y2-y1x2。如果由v1到v2是顺时针转动,外积为负,反之为正,为0表示二者方向相同(平行)。
之前总结了PNN,NFM,AFM这类两两向量乘积的方式,这一节我们换新的思路来看特征交互。DeepCrossing是最早在CTR模型中使用ResNet的前辈,DCN在ResNet上进一步创新,为高阶特征交互提供了新的方法并支持任意阶数的特征交叉。
如果你使用 Python 语言进行科学计算,那么一定会接触到 Numpy。Numpy 是支持 Python 语言的数值计算扩充库,其拥有强大的高维度数组处理与矩阵运算能力。除此之外,Numpy 还内建了大量的函数,方便你快速构建数学模型。
神经风格迁移是一种优化技术,用于将两个图像——一个内容图像和一个风格参考图像(如著名画家的一个作品)——混合在一起,使输出的图像看起来像内容图像, 但是用了风格参考图像的风格。
在前面的几篇文章中我们分别介绍过numpy中的爱因斯坦求和函数Einsum和MindSpore框架中的爱因斯坦求和算子Einsum的基本用法。而我们需要知道,爱因斯坦求和其实还可以实现非常多的功能,甚至可以替代大部分的矩阵运算,比如常见的点乘、元素乘、求和等等这些都是可以的。那我们就逐一看一下可以用爱因斯坦求和来替代的那些函数和方法。
近日,DeepMind 的研究者提出了一种人工生命框架,旨在促进智能生物体的出现。该框架中没有明确的智能体概念,而是由原子元素构成的环境。这些元素包含神经操作,通过信息交换和环境中包含的类物理规则进行交互。研究者讨论了进化过程如何导致由许多此类原子元素构成的不同生物体的出现,这些原子元素可以在环境中共存和繁荣。此外,研究者还探讨了这如何构成通用 AI 生成算法的基础,并提供了这种系统的简化版实现,讨论了需要做哪些改进才能进一步扩大规模。
在开源的道路上,腾讯不仅将内部优质项目持续对外开放,还积极与国际开源社区协同合作,发挥中国企业的科技力量,推动开源和开放进一步升级。 6月25日,由CloudNative Computing Foundation (CNCF) 主办的云原生技术大会在上海举办,腾讯开源联盟主席、腾讯开源管理办公室委员、Apache Member堵俊平首次公开了腾讯整体的开源战略路线图。在开源的道路上,腾讯不仅将内部优质项目持续对外开放,还积极与国际开源社区协同合作,发挥中国企业的科技力量,推动开源和开放进一步升级。 堵俊平
领取专属 10元无门槛券
手把手带您无忧上云