首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NumPy 数据类型

numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。...----数据类型对象 (dtype)数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::数据的类型(整数,浮点数或者 Python 对象...)数据的大小(例如, 整数使用多少个字节存储)数据的字节顺序(小端法或大端法)在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分如果数据类型是子数组,那么它的形状和数据类型是什么...dtype 对象是使用以下语法构造的:numpy.dtype(object, align, copy)object - 要转换为的数据类型对象align - 如果为 true,填充字段使其类似 C 的结构体...3import numpy as np # 字节顺序标注dt = np.dtype('数据类型的使用,类型字段和对应的实际类型将被创建

1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    numpy 数据类型转换

    首先需要导入numpy模块import numpy as np首先生成一个浮点数组a = np.random.random(4)dtype的用法看看结果信息,左侧是结果信息,右侧是对应的python语句...由原来的(4,)变成了(8,)那么,再次改变数组的类型,由float32改为float16,会是什么样的结果呢??...果然不出所料,数组的长度再次翻倍,由原来的(8,)变成了(16,)如果再次改变数组的类型,由float16变为float64,会发现数组的长度也会由(16,)变为(4,)同理,如果数组的类型是int,也会有这样类似的变化...int32;如果改为 a.dtype = 'float' ,会发现浮点型默认的是float64float型和int型转换很多时候我们用numpy从文本文件读取数据作为numpy的数组,默认的dtype是...如果直接改变b的dtype的话,b的长度翻倍了,这不是我们想要的(当然如果你想的话)?结论numpy中的数据类型转换,不能直接改原数据的dtype! 只能用函数astype()。

    1.8K20

    【4】NumPy 数据类型

    参考链接: Numpy 数据类型对象 NumPy 数据类型  numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型...数据类型对象 (dtype)  数据类型对象是用来描述与数组对应的内存区域如何使用,这依赖如下几个方面:  数据的类型(整数,浮点数或者 Python 对象)数据的大小(例如, 整数使用多少个字节存储)...数据的字节顺序(小端法或大端法)在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分如果数据类型是子数组,它的形状和数据类型 字节顺序是通过对数据类型预先设定""来决定的...dtype 对象是使用以下语法构造的:  numpy.dtype(object, align, copy)  object - 要转换为的数据类型对象align - 如果为 true,填充字段使其类似...)  输出结果为:  int32  实例 3  import numpy as np # 字节顺序标注 dt = np.dtype('<i4') print(dt)  输出结果为:  int32  下面实例展示结构化数据类型的使用

    70020

    python中dtype什么意思_NumPy Python中的数据类型对象(dtype)

    1, 构造数据类型(dtype)对象:数据类型对象是numpy.dtype类的实例,可以使用numpy.dtype创建它。 参数: obj:要转换为数据类型对象的对象。...align:bool,可选,在字段中添加填充以匹配C编译器,为相似的C结构输出的内容。 copy:bool,可选,新建数据类型对象的副本。如果为False,则结果可能只是对内置数据类型对象的引用。...程序创建包含32位大端整数的数据类型对象 import numpy as np # i4代表大小为4字节的整数 # >表示大端字节顺序,而<表示小端字节编码. # dt是dtype对象 dt = np.dtype...# Python程序演示字段的使用 import numpy as np # 结构化数据类型,包含16个字符的字符串(在“name”字段中)和两个64位浮点数的子数组(在“grades”字段中) dt...双端队列优于列表中的情 […]… Numpy 数据类型对象 每个ndarray都有一个关联的数据类型(dtype)对象。

    2.3K10

    numpy和Pytorch对应的数据类型

    Numpy中的数据类型 名称 描述 bool_ 布尔型数据类型(True 或者 False) int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) intc 与 C 的...int 类型一样,一般是 int32 或 int 64 intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) int8 字节(-128 to 127...(0 to 65535) uint32 无符号整数(0 to 4294967295) uint64 无符号整数(0 to 18446744073709551615) float_ float64 类型的简写...float32 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 float64 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 complex_ complex128 类型的简写...,即 128 位复数 complex64 复数,表示双 32 位浮点数(实数部分和虚数部分) complex128 复数,表示双 64 位浮点数(实数部分和虚数部分) Pytorch中的数据类型

    95010

    【NumPy 数组索引、裁切,数据类型】

    NumPy 数组中的索引以 0 开头,这意味着第一个元素的索引为 0,第二个元素的索引为 1,以此类推。...from 2nd dim: ', arr[1, -1]) NumPy 数组裁切 裁切数组 python 中裁切的意思是将元素从一个给定的索引带到另一个给定的索引。...], [6, 7, 8, 9, 10]]) print(arr[0:2, 1:4]) NumPy 数据类型 Python 中的数据类型 默认情况下,Python 拥有以下数据类型: strings -...NumPy 中的数据类型 NumPy 有一些额外的数据类型,并通过一个字符引用数据类型,例如 i 代表整数,u 代表无符号整数等。 以下是 NumPy 中所有数据类型的列表以及用于表示它们的字符。...( void ) 检查数组的数据类型 NumPy 数组对象有一个名为 dtype 的属性,该属性返回数组的数据类型: 实例 获取数组对象的数据类型: import numpy as np arr

    20310

    tensor与numpy数据类型转换

    事实上,tensor与numpy虽然都是用来表示多维数组的,但是tensor弥补了numpy不能创建张量函数和求导,也不支持GPU的缺陷。可以说,tensor数据类型主要就是为了深度学习而生的。...,名为model,用它来生成图片分类结果,那么它输出的预测结果pred,就是tensor型的,pred_np就是将其转为numpy格式的结果。...pred.cpu().detach().numpy()就是把GPU下tensor类型的pred,转为CPU下的numpy格式: ?...tensor型的数据,是不能像numpy一样直接进行加减乘除各种运算的,以pytorch框架为例,它的很多运算都必须在torch框架下才可以。...不过关于tensor的计算,我们实际当中应用的很少,更多的是把模型输出的tensor型的结果,转化为numpy的数值,方便后面的操作,比如说,将模型的分类结果整合到pandas数组里面,集中进行展示:

    2.2K10

    Numpy 修炼之道 (3)—— 数据类型

    上一篇:Numpy 修炼之道 (2)—— N维数组 ndarray 推荐阅读时间:4min~6min 文章内容:Numpy 数据类型 Numpy 中的数组比 Python 原生中的数组(只支持整数类型与浮点类型...)强大的一点就是它支持更多的数据类型。...基本数据类型 Numpy 常见的基本数据类型如下: 布尔(True或False),存储为一个字节 以上这些数据类型都可以通过 np.bool_、np.float32等方式访问。...>>> np.array([1, 2, 3], dtype='f') array([ 1., 2., 3.], dtype=float32) 但是不推荐使用这种字符代码的方式 类型转换 要转换数组的类型...修炼之道(1) —— 什么是 Numpy Numpy 修炼之道 (2)—— N维数组 ndarray 作者:无邪,个人博客:脑洞大开,专注于机器学习研究。

    57090
    领券