首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据分析 | Pandas数据变换高级函数

一、Pandas的数据变换高级函数 ----------------- 在数据处理过程中,经常需要对DataFrame进行逐行、逐列和逐元素的操作(例如,机器学习中的特征工程阶段)。...import numpy as np import pandas as pd boolean=[True,False] gender=["男","女"] color=["white","black",...[a200e4689da469674cc96536057dd442.png] 我们来通过例子理解一下这个方法的使用。例如,我们对data中的数值列分别进行取对数和求和的操作。....png] (2)按列取对数的实现过程 因为是对列进行操作,所以需要指定axis=0。...本系列教程涉及的速查表可以在以下地址下载获取 Pandas速查表 NumPy速查表 Matplotlib速查表 Seaborn速查表 拓展参考资料 Pandas官方教程 Pandas中文教程 ShowMeAI

1.4K31

Pandas数据处理——通过value_counts提取某一列出现次数最高的元素

这个图片的来自于AI生成,我起名叫做【云曦】,根据很多的图片进行学习后生成的  Pandas数据处理——渐进式学习——通过value_counts提取某一列出现次数最高的元素 ---- 目录 Pandas...Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- value_counts..., default False 默认降序排序 bins : integer, 格式(bins=1),意义不是执行计算,而是把它们分成半开放的数据集合,只适用于数字数据 dropna : 对元素进行计数的开始时默认空值...具体示例 模拟数据 import pandas as pd import numpy as np df = pd.DataFrame( {'name': ['张丽华', '李诗诗', '王语嫣

1.4K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python数据科学系列:pandas入门详细教程

    是在numpy的基础上实现的,所以numpy的常用数值计算操作在pandas中也适用: 通函数ufunc,即可以像操作标量一样对series或dataframe中的所有元素执行同一操作,这与numpy...如下实现对数据表中逐元素求平方 ? 广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。...apply,既适用于series对象也适用于dataframe对象,但对二者处理的粒度是不一样的:apply应用于series时是逐元素执行函数操作;apply应用于dataframe时是逐行或者逐列执行函数操作...sort_index、sort_values,既适用于series也适用于dataframe,sort_index是对标签列执行排序,如果是dataframe可通过axis参数设置是对行标签还是列标签执行排序...相关阅读: python数据科学系列:matplotlib入门详细教程 python数据科学系列:numpy入门详细教程 一句SQL,我有6种写法 分享几道LeetCode中的MySQL题目解法 听说数据分析师挺火

    15.1K20

    Pandas 2.2 中文官方教程和指南(二十四)

    这个工作流程的峰值内存使用量是最大块的内存,再加上一个小系列存储到目前为止的唯一值计数。只要每个单独的文件都适合内存,这将适用于任意大小的数据集。...此工作流的峰值内存使用量是最大的单个块,再加上一个小系列,用于存储到目前为止的唯一值计数。只要每个单独的文件都适合内存,这将适用于任意大小的数据集。...手动分块是一个适用于不需要太复杂操作的工作流程的选择。一些操作,比如pandas.DataFrame.groupby(),在分块方式下要困难得多。...不会计算具有 dtype=object 的列中的值所使用的内存。...## 通过用户定义的函数 (UDF) 方法进行变异 此部分适用于需要 UDF 的 pandas 方法。

    41500

    数据导入与预处理-第4章-pandas数据获取

    header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...如果分析日期,则分析默认的datelike列 numpy:默认为False,直接解码到numpy阵列。仅支持数字数据,但不支持非数字列和索引标签。...还要注意,如果numpy=True,则每个术语的JSON顺序必须相同。 precise_float:boolean类型,默认False。设置为在将字符串解码为双倍值时启用更高精度(STROD)函数。...flavor:表示使用的解析引擎。 index_col:表示将网页表格中的列标题作为DataFrame的行索引。 encoding:表示解析网页的编码方式。

    4.1K31

    Pandas图鉴(三):DataFrames

    Pandas 图鉴系列文章由四个部分组成: Part 1. Motivation:Pandas图鉴(一):Pandas vs Numpy Part 2....它由许多系列对象组成(有一个共享的索引),每个对象代表一个列,可能有不同的dtypes。...为了使其发挥作用,这两个DataFrame需要有(大致)相同的列。这与NumPy中的vstack类似,你如下图所示: 在索引中出现重复的值是不好的,会遇到各种各样的问题。...文档中的 "保留键序" 声明只适用于left_index=True和/或right_index=True(其实就是join的别名),并且只在要合并的列中没有重复值的情况下适用。...在上面的例子中,所有的值都是存在的,但它不是必须的: 对数值进行分组,然后对结果进行透视的做法非常普遍,以至于groupby和pivot已经被捆绑在一起,成为一个专门的函数(和一个相应的DataFrame

    44420

    数据导入与预处理-第5章-数据清理

    在这一环节中,我们主要通过一定的检测与处理方法,将良莠不齐的“脏”数据清理成质量较高的“干净”数据。pandas为数据清理提供了一系列方法,本章将围绕这些数据清理方法进行详细地讲解。...删除缺失值:删除缺失值是最简单的处理方式,这种方式通过直接删除包含缺失值的行或列来达到目的,适用于删除缺失值后产生较小偏差的样本数据,但并不是十分有效。...线性插补: 2.1.5 缺失值处理案例 创建包含空缺值的DataFrame: import pandas as pd import numpy as np na_df = pd.DataFrame...2.2.3 重复值处理案例 创建DataFrame对象: # 创建DataFrame对象 import pandas as pd import numpy as np df = pd.DataFrame...,返回值为boolean数组 # 检测df对象中的重复值 df.duplicated() # 返回boolean数组 输出为: 查找重复值–将全部重复值所在的行筛选出来: # 查找重复值 #

    4.5K20

    Pandas库

    DataFrame:二维表格数据结构,类似于电子表格或SQL数据库中的表,能够存储不同类型的列(如数值、字符串等)。...在Pandas库中,Series和DataFrame是两种主要的数据结构,它们各自适用于不同的数据操作任务。我们可以对这两种数据结构的性能进行比较。...DataFrame: DataFrame是Pandas的主要数据结构,用于执行数据清洗和数据操作任务。 它是一个二维表格结构,可以包含多列数据,并且每列可以有不同的数据类型。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...Pandas作为Python中一个重要的数据分析库,相较于其他数据分析库(如NumPy、SciPy)具有以下独特优势: 灵活的数据结构:Pandas提供了两种主要的数据结构,即Series和DataFrame

    8510

    Pandas 2.2 中文官方教程和指南(十五)

    在StringArray中的缺失值将在比较操作中传播,而不总是像numpy.nan那样比较不相等。 本文档其余部分中的所有内容同样适用于string和object dtype。...因此,一系列混乱的字符串可以被“转换”为一个具有相同索引的清理或更有用的字符串的系列或DataFrame,而不需要使用get()来访问元组或re.match对象。...请注意,正则表达式中的任何捕获组名称将用作列名;否则将使用捕获组编号。 使用一个组的正则表达式提取返回一个列的DataFrame,如果expand=True。...在StringArray中的缺失值将在比较操作中传播,而不像numpy.nan那样总是比较不相等。 本文档其余部分中的其他内容同样适用于string和object dtype。...在StringArray中的缺失值将在比较操作中传播,而不像numpy.nan那样总是比较不相等。 本文档其余部分中的所有内容同样适用于string和object dtype。

    23610

    用Pandas处理缺失值

    由于 None 是一个 Python 对象, 所以不能作为任何 NumPy / Pandas 数组类型的缺失值,只能用于 'object' 数组类型) : import numpy as np import...Pandas中NaN与None的差异 虽然 NaN 与 None 各有各的用处, 但是 Pandas 把它们看成是可以等价交换的, 在适当的时候会将两者进行替换: pd.Series([1, np.nan...强制转换为 float64 np.nan floating 浮点型 无变化 np.nan boolean 布尔类型 强制转换为 object None 或 np.nan 需要注意的是, Pandas...2 hello dtype: object 在 Series 里使用的 isnull() 和 notnull() 同样适用于DataFrame, 产生的结果同样是布尔类型。..., 因为可能有时候只需要剔除全部是缺失值的行或列, 或者绝大多数是缺失值的行或列。

    2.8K10

    Python数据分析常用模块的介绍与使用

    Pandas则是一个开源的、提供高性能、易于使用的数据结构和数据分析工具的Python库。它提供了数据清洗、数据转换、数据处理等一系列功能,使数据分析变得更加简单高效。...Pandas是基于Numpy构建的数据分析库,但它比Numpy有更高级的数据结构和分析工具,如Series类型、DataFrame类型等。...总而言之,Pandas的Series是一种强大的数据结构,它提供了灵活的数据访问和处理方式,适用于各种数据分析和数据处理任务。...第一列是数据的索引,第二列是数据 示例 当Series数组元素为数值时,可以使用Series对象的describe方法对Series数组的数值进行分析 DataFrame Pandas是一种开源的Python...如果把Series看作Excel表中的一列,DataFrame就是Excel的一张工作表。

    32410

    数据科学 IPython 笔记本 7.7 处理缺失数据

    在本节中,我们将讨论缺失数据的一些一般注意事项,讨论 Pandas 如何选择来表示它,并演示一些处理 Python 中的缺失数据的 Pandas 内置工具。...缺失数据惯例中的权衡 许多方案已经开发出来,来指示表格或DataFrame中是否存在缺失数据。通常,它们围绕两种策略中的一种:使用在全局表示缺失值的掩码,或选择表示缺失条目的标记值。...像NaN这样的常见特殊值不适用于所有数据类型。 在大多数情况下,不存在普遍最佳选择,不同的语言和系统使用不同的惯例。...Pandas 中的缺失数据 Pandas 处理缺失值的方式受到其对 NumPy 包的依赖性的限制,NumPy 包没有非浮点数据类型的 NA 值的内置概念。...转换为float64 np.nan boolean 转换为object None或np.nan 请记住,在 Pandas 中,字符串数据始终与object dtype一起存储。

    4.1K20

    3大利器详解-mapapplyapplymap

    Pandas三大利器-map、apply、applymap 我们在利用pandas进行数据处理的时候,经常会对数据框中的单行、多行(列也适用)甚至是整个数据进行某种相同方式的处理,比如将数据中的sex字段中男替换成...本文中介绍了pandas中的三大利器:map、apply、applymap来解决上述的需求。 ? 模拟数据 通过一个模拟的数据来说明3个函数的使用,在这个例子中学会了如何生成各种模拟数据。...数据如下: import pandas as pd import numpy as np boolean = [True, False] gender = ["男","女"] color = ["white...pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。...在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。

    62210

    Pandas数据分析包

    Series、Numpy中的一维Array、Python基本数据结构List区别:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,...(pop) print(frame3) print('Ohio' in frame3.columns) print('2003' in frame3.index) pandas中主要的index对象 ?...由于需要执行一些数据整理和集合逻辑,所以drop方法返回的是一个在指定轴上删除了指定值的新对象 import numpy as np from pandas import Series, DataFrame...numpy as np from pandas import Series, DataFrame print('根据索引排序,对于DataFrame可以指定轴。')...,它在修正数据,用一个DataFrame来填补前面的DataFrame中NAN的数据 Merge, join, and concatenate官方文档说明:http://pandas.pydata.org

    3.1K71

    Pandas数据处理——盘点那些常用的函数(上)

    Pandas系列接下来的文章会为大家整理一下实际使用中比较高频的一些用法,当然还会有一篇关于时间序列处理的文章。...,比如company中各个公司都有多少人 主要参数: normalize (boolean, default False) 返回各类的占比 sort (boolean, default True) 是否对统计结果进行排序...主要用途:对数据按照索引进行排序 主要参数: ascending (boolean, default False) 是否升序排列 inplace (boolean, default False) 是否作用于原对象...主要用途:对DataFrame而言,按照某列进行排序(用by参数控制),对Series按数据列进行排序。...主要参数: by (str or list of str) 作用于DataFrame时需要指定排序的列 ascending (boolean, default False) 是否升序排列 In [28]

    60831

    Pandas数据处理——盘点那些常用的函数(上)

    Pandas数据处理——盘点那些常用的函数(上) 2020-04-22阅读 760 Pandas系列接下来的文章会为大家整理一下实际使用中比较高频的一些用法,当然还会有一篇关于时间序列处理的文章。...,比如company中各个公司都有多少人 主要参数: normalize (boolean, default False) 返回各类的占比 sort (boolean, default True) 是否对统计结果进行排序...主要用途:对数据按照索引进行排序 主要参数: ascending (boolean, default False) 是否升序排列 inplace (boolean, default False) 是否作用于原对象...主要用途:对DataFrame而言,按照某列进行排序(用by参数控制),对Series按数据列进行排序。...主要参数: by (str or list of str) 作用于DataFrame时需要指定排序的列 ascending (boolean, default False) 是否升序排列 In [28]

    62540

    如果 .apply() 太慢怎么办?

    如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...': [3, 4, 2], 'sweetness': [1, 2, 3]} df = pd.DataFrame(data=d) df 如果我们想要在数据帧中添加一个名为'diameter'的列,基于半径列中的值...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...唯一需要做的是创建一个接受所需的数量的NumPy数组(Pandas系列)作为输入的函数。...或者尝试找到适用于任务的现有NumPy函数。 如果你想要对Pandas数据帧中的多个列使用 .apply(),请尽量避免使用 .apply(,axis=1) 格式。

    29710
    领券