首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python光流法算法学习「建议收藏」

    光流法是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。一般而言,光流是由于场景中前景目标本身的移动、相机的运动,或者两者的共同运动所产生的。 简单来说,光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”。光流的研究是利用图像序列中的像素强度数据的时域变化和相关性来确定各自像素位置的“运动”。研究光流场的目的就是为了从图片序列中近似得到不能直接得到的运动场。

    02

    光流估计——从传统方法到深度学习

    近年来,深度学习技术,作为一把利剑,广泛地应用于计算机视觉等人工智能领域。如今时常见诸报端的“人工智能时代”,从技术角度看,是“深度学习时代”。光流估计是计算机视觉研究中的一个重要方向,然而,因为其不容易在应用中“显式”地呈现,而未被大众熟知。随着计算机视觉学界从图像理解转向视频理解,互联网用户从发布图片朋友圈转向发布短视频,人们对视频的研究和应用的关注不断增强。光流估计作为视频理解的隐形战士,等着我们去寻找其踪迹。本文首先介绍了什么是视频光流估计;再介绍光流估计的算法原理,包括最为经典的Lucas-Kanade算法和深度学习时代光流估计算法代表FlowNet/FlowNet2;最后,介绍了视频光流估计的若干应用。希望对光流估计的算法和应用有个较为全面的介绍。

    03
    领券