首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何利用 pandas 根据数据类型进行筛选?

前两天,有一位读者在知识星球提出了一个关于 pandas 数据清洗的问题。...他的数据大致如下 现在希望分别做如下清洗 “ A列中非字符行 B列中非日期行 C列中数值形式行(包括科学计数法的数值) D列中非整数行 删掉C列中大小在10%-90%范围之外的行 ” 其实本质上都是「...数据筛选」的问题,先来模拟下数据 如上图所示,基本上都是根据数据类型进行数据筛选,下面逐个解决。...取出所有非整数类型 让我们从第 4 题开始,取出 D 列全部非整数行,其实在 pandas 中可以使用.is_integer() 判断一个元素是否为整数。...直接计算该列的指定范围,并多条件筛选即可。 至此我们就成功利用 pandas 根据 数据类型 进行筛选值。其实这些题都在「pandas进阶修炼300题」中有类似的存在。

1.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    懂Excel就能轻松入门Python数据分析包pandas(十二):多列堆叠

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据的重灾区,这主要是因为他有高度的灵活性,今天来看看一个多列堆叠问题。...现在来看看,在 pandas 中怎么简单转换成规范的2列数据: - 第一句主要是为了最后结果的标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy 的 reshape 方法,即可完成需求...- .reshape(-1,2) ,其中的2就是2列,而 -1 是让 numpy 你根据数据来计算最终的行数 - 第三句,只是把结果的数组变为一个 DataFrame - 至于最后的 dropna ,...是把那些空行去掉 案例2:竖向堆叠 你可能已经注意到,上面的结果是"横向的"。...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy 的 reshape 方法,可以快速把数组转换成指定行数或列数 - 用 -1 可以让 numpy 自动计算行或列的数量

    72710

    在Pandas中更改列的数据类型【方法总结】

    例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...>>> s = pd.Series(['1', '2', '4.7', 'pandas', '10']) >>> s 0 1 1 2 2 4.7 3 pandas...默认情况下,它不能处理字母型的字符串’pandas’: >>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise') ValueError: Unable...然后可以写: df[['col2','col3']] = df[['col2','col3']].apply(pd.to_numeric) 那么’col2’和’col3’根据需要具有float64类型。...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。

    20.3K30

    懂Excel就能轻松入门Python数据分析包pandas(十二):多列堆叠

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据的重灾区,这主要是因为他有高度的灵活性,今天来看看一个多列堆叠问题。...现在来看看,在 pandas 中怎么简单转换成规范的2列数据: - 第一句主要是为了最后结果的标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy 的 reshape 方法,即可完成需求...- .reshape(-1,2) ,其中的2就是2列,而 -1 是让 numpy 你根据数据来计算最终的行数 - 第三句,只是把结果的数组变为一个 DataFrame - 至于最后的 dropna ,...是把那些空行去掉 案例2:竖向堆叠 你可能已经注意到,上面的结果是"横向的"。...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy 的 reshape 方法,可以快速把数组转换成指定行数或列数 - 用 -1 可以让 numpy 自动计算行或列的数量

    80720

    【如何在 Pandas DataFrame 中插入一列】

    然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...示例 1:插入新列作为第一列 以下代码显示了如何插入一个新列作为现有 DataFrame 的第一列: import pandas as pd #create DataFrame df = pd.DataFrame...以下代码显示了如何插入一个新列作为现有 DataFrame 的第三列: import pandas as pd #create DataFrame df = pd.DataFrame({'points...以下代码显示了如何插入一个新列作为现有 DataFrame 的最后一列: import pandas as pd #create DataFrame df = pd.DataFrame({'points...在这个例子中,我们使用numpy的where函数,根据分数的条件判断,在’Grade’列中插入相应的等级。

    1.1K10

    深入探索Pandas库:Excel数据处理的高级技巧

    深入探索Pandas库:Excel数据处理的高级技巧 在数据分析领域,Pandas库因其强大的数据处理能力而广受欢迎。...在某些情况下,我们需要将列的数据类型转换为另一种类型: # 数据类型转换 df['age'] = df['age'].astype(int) 设置索引 将一列设置为DataFrame的索引,可以方便我们进行后续的数据处理...how='inner') 连接数据 在索引上连接数据,可以扩展DataFrame的行数: # 连接数据 result = pd.concat([df1, df2], axis=0) 数据分组 分组 根据某些条件将数据分组...,可以方便我们对数据进行分组处理: # 分组 grouped = df.groupby('age') 数据重塑 堆叠 将多层索引堆叠为单个索引,有助于简化数据结构: # 堆叠 df.stack() 解堆叠...将堆叠的索引解堆叠为多层索引,有助于恢复原始的数据结构: # 解堆叠 df.unstack() 数据探索 描述性统计 获取数据的描述性统计信息,有助于我们快速了解数据的基本情况: # 描述性统计 df.describe

    6500

    Python数据分析之数据预处理(数据清洗、数据合并、数据重塑、数据转换)学习笔记

    数据合并2.1轴向堆叠数据2.1.1 concat()函数    2.2 主键合并数据2.2.1 merge()函数2.2.1.1 how参数可以取下列值    2.3 根据行索引合并数据2.3.1 join...创建 Pandas数据对象时,如果没有明确地指出数据的类型,则可以根据传入的数据推断出来并且通过 dtypes属性进行查看。 ...根据轴方向的不同,可以将堆叠分成横向堆叠与纵向堆叠,默认采用的是纵向堆叠方式。  ​...3.2 轴向旋转  ​ 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。 ...数据转换  4.1 重命名轴索引  Pandas中提供了一个rename()方法来重命名个别列索引或行索引的标签或名称。

    5.5K00

    Pandas数据合并:concat与merge

    二、concat的基本用法(一)概述concat函数用于沿着一个特定的轴(行或列)将多个Pandas对象(如DataFrame或Series)连接在一起。...axis:指定连接的方向,默认为0,表示按行连接;1表示按列连接。join:控制连接时如何处理索引对齐。可选值有'inner'(取交集)和'outer'(取并集),默认为'outer'。...(result)三、merge的基本用法(一)概述merge函数更类似于SQL中的JOIN操作,它根据某些键(通常是共同的列)来合并两个DataFrame。...确保用于合并的键是唯一标识符,或者根据业务需求明确合并规则。(二)列名冲突问题在合并过程中,很容易遇到列名冲突的情况。对于concat,可以通过选择特定的列或者重命名列来避免。...chinese_scores.merge(math_scores, on='student_id', suffixes=('_chinese', '_math'))print(merged_with_suffix)(三)数据类型不一致问题如果参与合并的列的数据类型不一致

    14610

    Python pandas十分钟教程

    Pandas是数据处理和数据分析中最流行的Python库。本文将为大家介绍一些有用的Pandas信息,介绍如何使用Pandas的不同函数进行数据探索和操作。...包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作的函数使用,这是一个很好的快速入门指南,如果你已经学习过pandas,那么这将是一个不错的复习。...import pandas as pd pandas在默认情况下,如果数据集中有很多列,则并非所有列都会显示在输出显示中。...例如输出(48,14)表示48行14列。 df.info():提供数据摘要,包括索引数据类型,列数据类型,非空值和内存使用情况。 df.describe():提供描述性统计数据。...Concat适用于堆叠多个数据帧的行。

    9.8K50
    领券