首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

找出时序遥感影像中缺少的日期:Python

首先,本文的需求和前述提及的文章略有不同。在这里,我们已经下载好了大量的、以遥感数据成像时间为文件名的栅格文件,如下图所示。   ...在这个函数中,我们定义了起始年份start_year和结束年份end_year,以及每个文件之间的日期间隔 days_per_file;随后,创建一个空列表missing_dates,用于存储遗漏的日期...在函数外部,我们定义要检查的文件夹路径folder_path,然后就可以调用check_missing_dates函数,传入文件夹路径参数,执行日期检查,将返回的遗漏日期列表赋值给missing_dates...最后,我们打印遗漏日期的总数len(missing_dates),并打印每个具体的遗漏日期。   执行上述代码,即可出现如下图所示的结果。...即在我这里,目前有8个日期的遥感影像文件没有下载成功,我们再对照这8个遥感影像的日期,重新到相关网站中下载即可。   至此,大功告成。

9610

盘点一个Pandas日期处理的问题

一、前言 前几天在Python群里【爱的力量】问了一个Python日期处理的问题,这里拿出来给大家分享下。...'2022-03-25 08:00:00.000000000' 大佬们,这种格式的字符串有什么简单的方法可以转换为2022年3月25日8时吗?...不过粉丝是因为要用在一个较为复杂的程序里面,这是个中间步骤,没法用excel。 想要使用Python来实现,那么该怎么来处理呢?这里是字符串格式化转时间格式,问ChatGPT应该也会有答案的。...后来【F.light】也给了一个方法,代码如下图所示: 答案很接近了,这个代码得到的是03日08时,而粉丝需要的答案是2022年3日8时这样的结果,这里的答案还有点小瑕疵,后来【Peter】给了一个可行的代码...这篇文章主要盘点了一个Pandas日期处理的问题,文中针对该问题,给出了多种解决方法,也给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

20930
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    盘点一个Pandas日期处理的问题

    一、前言 前几天在Python群里【爱的力量】问了一个Python日期处理的问题,这里拿出来给大家分享下。...'2022-03-25 08:00:00.000000000' 大佬们,这种格式的字符串有什么简单的方法可以转换为2022年3月25日8时吗?...后来【F.light】也给了一个方法,代码如下图所示: 答案很接近了,这个代码得到的是03日08时,而粉丝需要的答案是2022年3日8时这样的结果,这里的答案还有点小瑕疵,后来【Peter】给了一个可行的代码...这篇文章主要盘点了一个Pandas日期处理的问题,文中针对该问题,给出了多种解决方法,也给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...站不住就准备加仓,这个pandas语句该咋写?

    15640

    Pandas案例精进 | 无数据记录的日期如何填充?

    如上图所示,就缺少2021-09-04、2021-09-05、2021-09-08三天的数据,需要增加其记录并设置提交量为0。...这样不就可以出来我想要的结果了吗~ 说干就干,先来填充一个日期序列了来~ # 习惯性导入包 import pandas as pd import numpy as np import time,datetime...解决问题 如何将series 的object类型的日期改成日期格式呢? 将infer_datetime_format这个参数设置为True 就可以了,Pandas将会尝试转换为日期类型。...Pandas会遇到不能转换的数据就会赋值为NaN,但这个方法并不太适用于我这个需求。...以上就是我关于Pandas在工作上的分享,希望能帮助到大家。 下载练习数据:https://www.lanzoui.com/iBAhpv8ym4j

    2.6K00

    多窗口大小和Ticker分组的Pandas滚动平均值

    最近一个学弟在在进行数据分析时,经常需要计算不同时间窗口的滚动平均线。当数据是多维度的,比如包含多个股票或商品的每日价格时,我们可能需要为每个维度计算滚动平均线。...这意味着,如果我们想为每个股票计算多个时间窗口的滚动平均线,我们需要编写一个自定义函数,该函数可以接受一个时间序列作为输入,并返回一个包含多个滚动平均线的DataFrame。...然后,使用groupby和apply方法,将my_RollMeans函数应用到每个分组对象中的每个元素。这样,就可以为每个股票计算多个时间窗口的滚动平均线,并避免数据维度不匹配的问题。...滚动平均线(Moving Average)是一种用于平滑时间序列数据的常见统计方法。它通过计算数据序列中特定窗口范围内数据点的平均值,来消除数据中的短期波动,突出长期趋势。...这种平滑技术有助于识别数据中的趋势和模式。滚动平均线的计算方法是,对于给定的窗口大小(通常是时间单位),从数据序列的起始点开始,每次将窗口内的数据点的平均值作为平均线的一个点,并逐步向序列的末尾滑动。

    19510

    Python时间序列分析简介(2)

    滚动时间序列 滚动也类似于时间重采样,但在滚动中,我们采用任何大小的窗口并对其执行任何功能。简而言之,我们可以说大小为k的滚动窗口 表示 k个连续值。 让我们来看一个例子。...在这里,我们可以看到在30天的滚动窗口中有最大值。 使用Pandas绘制时间序列数据 有趣的是,Pandas提供了一套很好的内置可视化工具和技巧,可以帮助您可视化任何类型的数据。...请注意,滚动平均值中缺少前30天,并且由于它是滚动平均值,与重采样相比,它非常平滑。 同样,您可以根据自己的选择绘制特定的日期。假设我要绘制从1995年到2005年的每年年初的最大值。...看看我如何在xlim中添加日期。主要模式是 xlim = ['开始日期','结束日期']。 ? 在这里,您可以看到从1999年到2014年年初的最大值输出。 学习成果 这使我们到了本文的结尾。...希望您现在已经了解 在Pandas中正确加载时间序列数据集 时间序列数据索引 使用Pandas进行时间重采样 滚动时间序列 使用Pandas绘制时间序列数据

    3.4K20

    Pandas中提取具体一个日期的数据怎么处理?

    一、前言 前几天在Python最强王者交流群【FiNε_】问了一个Pandas数据提取的问题。...不用考虑是不是日期,直接写转字符串,因为在给不同客户使用时,无法保证是否都是字符串日期,所以转成字符串日期这个命令必须要加,做个保证。...其实这种用字符串来判断不是很好,万一哪个客户写的 日期前后有空格,一样判断不对。 这个方法顺利地解决了粉丝的问题。...pd.to_datetime(df['DATE']) result = df.loc['2023-12-31'] result = df.loc['20231231'] 上面这两种方式都可以取出来,也就是说参数中的日期格式已经不重要了...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    18910

    Pandas时序数据处理入门

    作为一个几乎每天处理时间序列数据的人,我发现pandas Python包对于时间序列的操作和分析非常有用。 使用pandas操作时间序列数据的基本介绍开始前需要您已经开始进行时间序列分析。...、计算滚动统计数据,如滚动平均 7、处理丢失的数据 8、了解unix/epoch时间的基本知识 9、了解时间序列数据分析的常见陷阱 让我们开始吧。...首先导入我们将使用的库,然后使用它们创建日期范围 import pandas as pd from datetime import datetime import numpy as npdate_rng...我们可以按照下面的示例,以日频率而不是小时频率,获取数据的最小值、最大值、平均值、总和等,其中我们计算数据的日平均值: df.resample('D').mean() } 窗口统计数据,比如滚动平均值或滚动和呢...3、丢失的数据可能经常发生-确保您记录了您的清洁规则,并且考虑到不回填您在采样时无法获得的信息。 4、请记住,当您对数据重新取样或填写缺少的值时,您将丢失有关原始数据集的一定数量的信息。

    4.1K20

    高质量编码--使用Pandas查询日期文件名中的数据

    如下场景:数据按照日期保存为文件夹,文件夹中数据又按照分钟保存为csv文件。...image.png image.png image.png 2019-07-28文件夹和2019-07-29中的文件分别如下: image.png image.png 代码如下,其中subDirTimeFormat...,fileTimeFormat,requestTimeFormat分别来指定文件夹解析格式,文件解析格式,以及查询参数日期解析格式: import os import pandas as pd onedayDelta...',12,"name",["value1","value2"]) print(result) 让我们查询2019-07-28 05:29到2019-07-29 17:29之间name为12的数据...看一下调用结果: 通过比较检验,确认返回结果和csv文件中的数据是一致的, name为12在各个csv中数据如下: image.png image.png image.png image.png

    2K30

    带公式的excel用pandas读出来的都是空值和0怎么办?——补充说明_日期不是日期

    之所以另 起一篇,是因为 ①频繁修改需要审核比较麻烦 ②这个问题是数据源头的错误,不常碰到,而且可控的,楼主这里是因为积攒了大批数据,去改源头之前的也改不了,还是要手动,比较麻烦 先说问题,读取excel...时候,日期不是日期格式是数字或常规,显示的是四个数字,python读取出来的也是数字,写入数据库的也是数字而不是日期 附上读取带公式的excel的正文链接: https://blog.csdn.net.../qq_35866846/article/details/102672342 读取函数rd_exel循环之前先处理日期 sheet1.Cells(2,3).NumberFormatLocal = "yyyy.../mm/dd"#excel VBA语法 #添加到循环之前,2行3列对应C2是数字格式的日期 处理这个问题,楼主本人电脑是可以跑通的完全没问题,注意打印出来date,看下格式,跟平常见的不是太一样!...pywintypes.datetime(2019, 10, 20, 0, 0, tzinfo=TimeZoneInfo(‘GMT Standard Time’, True)) 是一个时间模块,我本来以为是pandas

    1.7K20

    Pandas知识点-DataFrame数据结构介绍

    一、Pandas简介和安装 Pandas是Python中用于数据处理和数据分析的开源库,2008年由金融数据分析师Wes McKinney开发。...开发Pandas的初衷是为了方便进行金融数据分析,现在Pandas的功能越来越丰富,应用范围也越来越广,几乎所有需要做数据处理的地方都可以派上用场。...进入贵州茅台的的个股行情页面,向下滚动到“资金流向”显示栏,然后点击右上角的“更多”。 ? 3. 进入资金流向的详情页面后,点击“历史交易数据”,然后点击“下载数据”,即可下载贵州茅台的历史交易数据。...与numpy中的ndarray相比,ndarray只有数据部分,没有行索引和列索引,缺少对数据的描述和说明,没有赋予数据实际意义。...将日期设置为行索引后,“日期”这一列数据变成了索引,数据中就不再有日期了。可见,set_index()移动了列的位置,从数据移动到了行索引(但没有删除数据)。

    2.4K40

    Pandas学习笔记之时间序列总结

    关键词:pandas NumPy 时间序列 Pandas 的发展过程具有很强的金融领域背景,因此你可以预料的是,它一定包括一整套工具用于处理日期、时间和时间索引数据。...最后,还要提醒的是,虽然datetime64数据类型解决了 Python 內建datetime类型的低效问题,但是它却缺少很多datetime特别是dateutil对象提供的很方便的方法。...滚动窗口 滚动窗口统计是第三种 Pandas 时间序列相关的普遍操作。...在该滚动窗口视图上可以进行一系列的聚合操作。...更多学习资源 本节只是简要的介绍了 Pandas 提供的时间序列工具中最关键的特性;需要完整的内容介绍,你可以访问 Pandas 在线文档的"时间序列/日期"章节。

    4.2K42

    Pandas数据应用:天气数据分析

    Pandas 是一个强大的 Python 数据处理库,广泛应用于数据科学领域。本文将从基础到深入,介绍如何使用 Pandas 进行天气数据分析,并探讨常见问题、报错及解决方案。1....初识 Pandas 和天气数据1.1 Pandas 简介Pandas 是一个开源的数据分析和操作工具,提供了高效的数据结构和数据分析功能。...例如,日期列可能是字符串类型,而我们需要将其转换为日期时间类型以便进行时间序列分析。...# 将日期列转换为日期时间类型df['date'] = pd.to_datetime(df['date'])# 设置日期列为索引df.set_index('date', inplace=True)2.3...我们可以使用 Pandas 提供的时间序列功能来进行滚动平均、重采样等操作。2.3.1 滚动平均滚动平均可以帮助我们平滑数据,减少噪声的影响。

    21610

    Pandas处理时间序列数据的20个关键知识点

    除了这3个结构之外,Pandas还支持日期偏移概念,这是一个与日历算法相关的相对时间持续时间。...欧洲风格的日期 我们可以使用to_datetime函数处理欧洲风格的日期(即日期在先)。dayfirst参数被设置为True。...而且,Pandas处理顺序时间序列数据非常简单。 我们可以将日期列表传递给to_datetime函数。...例如,在上一步创建的系列中,我们可能只需要每3天(而不是平均3天)一次的值。 S.asfreq('3D') 20.滚动 滚动对于时间序列数据是一种非常有用的操作。...滚动意味着创建一个具有指定大小的滚动窗口,并对该窗口中的数据执行计算,当然,该窗口将滚动数据。下图解释了滚动的概念。 值得注意的是,计算开始时整个窗口都在数据中。

    2.7K30

    Pandas处理Excel单元格这个日期怎么转换为正常的时序呢?_ 怎么删除?

    一、前言 前几天在Python最强王者交流群【FiNε_】问了一个Python处理Excel数据的问题,问题如下:这个怎么转换为正常的时序呢?_ 怎么删除?...二、实现过程 这里【瑜亮老师】给了一个解答,直接replace,如下所示: df[0] = df[0].str.replace('_', ' ') 顺利地解决了粉丝的问题。...除了Python,如果你有其他问题也可以问,会的就会回答,不会的那就没得法。 如果你也有类似这种Python相关的小问题,欢迎随时来交流群学习交流哦,有问必答!...这篇文章主要盘点了一个Python处理Excel数据的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【FiNε_】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】等人参与学习交流。

    12010

    美国确诊超100万!教你用Python画出全球疫情动态图

    使用Flourish的可视化模板制图 一、数据整理 我们使用pandas读入数据,本次使用数据来自于世卫组织-欧洲疾控中心统计网站,数据统计了2020.13.31日至2020.04.29日共207个国家的疫情日新增数据.../data/Data.1588152303036.csv’) df_sample.head() 观察数据集,我们明确需要将数据整理成以上的格式,需要进行以下几步工作: 提取数据,此处我们提取日期(dateRep...)、国家(countriesAndTerritories)、日新增确诊(cases)三列即可 通过日新增确诊人数计算每日累计确诊人数 对日期列进行摊平,按照国家和日期进行数据透视操作。.../# 提取数据/ df_sel = df_cov[['dateRep', 'cases', 'countriesAndTerritories']] /# 累计求和-计算每日累计新增数据/ df_all...第二步就是优化可视化图表,点击上方的“Preview”,就会发现模板自动就已经开始按照时间开始滚动了!

    1.6K30
    领券