首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas的分组聚合groupby

Pandas怎样实现groupby分组统计 groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数 import pandas as pd import numpy as np %matplotlib...我们看到: groupby中的’A’变成了数据的索引列 因为要统计sum,但B列不是数字,所以被自动忽略掉 2、多个列groupby,查询所有数据列的统计 df.groupby(['A','B'])...C'] sum mean std A bar -2.142940 -0.714313 0.741583 foo -2.617633 -0.523527 0.637822 5、不同列使用不同的聚合函数...二、遍历groupby的结果理解执行流程 for循环可以直接遍历每个group 1、遍历单个列聚合的分组 g = df.groupby('A') g pandas.core.groupby.generic.DataFrameGroupBy...4 -1.093602 Name: C, dtype: float64 pandas.core.series.Series'> 其实所有的聚合统计,都是在dataframe和series

1.7K40

Pandas数据聚合:groupby与agg

引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...可以通过设置dropna=False参数来保留这些行。 性能优化:对于大规模数据集,直接使用groupby可能会导致性能瓶颈。...不同类型组合:当涉及不同数据类型的列一起聚合时(如数字与日期),应确保逻辑上的合理性。 性能考虑:随着参与聚合的列数增加,计算量也会相应增大。对于大规模数据集,优化查询效率成为关键。...("\n对同一列应用多个聚合函数:") print(multi_func_agg_result) 总结 通过对Pandas groupby和agg的学习,我们可以更好地理解和运用这一强大工具来满足各种数据分析需求

42710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对比MySQL学习Pandas的groupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...再接着就是执行select条件,聚合函数就是写在select后面的,对比pandas就是执行agg()函数,在其中针对不同的列执行count、max、min、sum、mean聚合函数。...4)用一个例子讲述MySQL和Pandas分组聚合 ① 求不同deptno(部门)下,sal(工资)大于8000的部门、工资; ?...02 groupby分组聚合的原理说明 1)原理图 ?...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作

    2.9K10

    对比MySQL学习Pandas的groupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...再接着就是执行select条件,聚合函数就是写在select后面的,对比pandas就是执行agg()函数,在其中针对不同的列执行count、max、min、sum、mean聚合函数。...4)用一个例子讲述MySQL和Pandas分组聚合 ① 求不同deptno(部门)下,sal(工资)大于8000的部门、工资; ?...02 groupby分组聚合的原理说明 1)原理图 ?...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作

    3.2K10

    Pandas分组与聚合1.分组 (groupby)一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy二、GroupBy对象支持迭代操作三、GroupBy对象可以转换成

    文章来源:Python数据分析 1.分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程....groupby(df_obj['key1']))) 运行结果: pandas.core.groupby.DataFrameGroupBy'> pandas.core.groupby.SeriesGroupBy...按列分组、按数据类型分组 示例代码: # 按列分组 print(df_obj.dtypes) # 按数据类型分组 print(df_obj.groupby(df_obj.dtypes, axis=1)...内置的聚合函数 sum(), mean(), max(), min(), count(), size(), describe() 示例代码: print(df_obj5.groupby('key1...应用多个聚合函数 同时应用多个函数进行聚合操作,使用函数列表 示例代码: # 应用多个聚合函数 # 同时应用多个聚合函数 print(df_obj.groupby('key1').agg(['mean

    24.2K51

    盘点一道Pandas中分组聚合groupby()函数用法的基础题

    一、前言 前几天在Python最强王者交流群有个叫【Chloé】的粉丝问了一个关于Pandas中groupby函数的问题,这里拿出来给大家分享下,一起学习。...python中groupby函数主要的作用是进行数据的分组以及分组后的组内运算!...对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df.groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式...【月神】的解答 从这个图里可以看出来使用driver_gender列对data进行聚合后再对search_conducted列进行分组求和。.sum()就是求和函数,对指定数据列进行相加。...这篇文章基于粉丝提问,针对Pandas中分组聚合groupby()函数用法的基础题问题,给出了具体说明和演示,顺利地帮助粉丝解决了问题。

    85120

    Pandas高级数据处理:交互式数据探索

    通过 groupby() 方法,可以根据一个或多个列对数据进行分组,并对每个分组应用聚合函数(如 mean()、sum()、count() 等)。...可以通过 dropna=False 参数保留包含缺失值的分组。聚合结果不符合预期:有时聚合结果可能不符合预期,这可能是由于数据类型不一致或聚合函数选择不当。...确保数据类型正确,并根据需求选择合适的聚合函数。...可以通过传递多个列名给 groupby() 方法实现多级分组。此外,还可以使用 agg() 方法对不同列应用不同的聚合函数。...代码案例:# 按 'category' 和 'sub_category' 列分组,并对不同列应用不同的聚合函数result = df.groupby(['category', 'sub_category

    11410

    数据科学家私藏pandas高阶用法大全 ⛵

    1:DataFrame.copy() 如果我们希望对DataFrame操作,但是不希望改变原始DataFrame,我们可以使用df.copy()制作副本,如下例所示: import pandas as...().count 与 Groupby().size 如果你想获得 Pandas 的一列的计数统计,可以使用groupby和count组合,如果要获取2列或更多列组成的分组的计数,可以使用groupby和...我们经常会使用groupby对数据进行分组并统计每组的聚合统计信息,例如计数、平均值、中位数等。...我们经常会使用分组聚合的功能,如果要为聚合分配新名称,可以使用name = (column, agg_method)方法: import pandas as pd df = pd.DataFrame...对于 DataFrame 中的列,我们可以调整其数据类型,使用convert_dtypes()可以快速将它转换为我们需要的数据类型。

    6.1K30

    python数据科学系列:pandas入门详细教程

    广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。由于pandas是带标签的数组,所以在广播过程中会自动按标签匹配进行广播,而非类似numpy那种纯粹按顺序进行广播。...2 分组聚合 pandas的另一个强大的数据分析功能是分组聚合以及数据透视表,前者堪比SQL中的groupby,后者媲美Excel中的数据透视表。...一般而言,分组的目的是为了后续的聚合统计,所有groupby函数一般不单独使用,而需要级联其他聚合函数共同完成特定需求,例如分组求和、分组求均值等。 ?...pandas官网关于groupby过程的解释 级联其他聚合函数的方式一般有两种:单一的聚合需求用groupby+聚合函数即可,复杂的大量聚合则可借用agg函数,agg函数接受多种参数形式作为聚合函数,功能更为强大...由于此时各班的每门课成绩信息不唯一,所以直接用pivot进行重整会报错,此时即需要对各班各门课程成绩进行聚合后重整,比如取平均分。 ? 07 数据可视化 ?

    15.1K20

    Pandas0.25来了,别错过这10大好用的新功能

    Groupby 的命名聚合(Named Aggregation) 这可是个新功能,能直接为指定的聚合输出列命名。先创建一个 DataFrame 示例。...提供了更简单的写法,只需传递一个 Tuple 就可以了,Tuple 里的第一个元素是指定列,第二个元素是聚合函数,看看下面的代码,是不是少敲了好多下键盘: animals.groupby('品种')....命名聚合还支持 Series 的 groupby 对象,因为 Series 无需指定列名,只要写清楚要应用的函数就可以了。...Groupby 聚合支持多个 lambda 函数 0.25 版有一个黑科技,以 list 方式向 agg() 函数传递多个 lambda 函数。为了减少键盘敲击量,真是无所不用其极啊!...的缺失值排序,groupby保留类别数据的数据类型等,如需了解,详见官方文档 What's new in 0.25.0。

    2.2K30

    30 个小例子帮你快速掌握Pandas

    12.groupby函数 Pandas Groupby函数是一种通用且易于使用的函数,有助于获得数据概览。它使探索数据集和揭示变量之间的潜在关系变得更加容易。 我们将为groupby函数写几个例子。...13.通过groupby应用多个聚合函数 agg函数允许在组上应用多个聚合函数。函数列表作为参数传递。 df[['Geography','Gender','Exited']]....NamedAgg函数允许重命名聚合中的列。...重设索引,但原始索引保留为新列。我们可以在重置索引时将其删除。...23.分类数据类型 默认情况下,分类数据与对象数据类型一起存储。但是,这可能会导致不必要的内存使用,尤其是当分类变量的基数较低时。 低基数意味着与行数相比,一列具有很少的唯一值。

    10.8K10

    DataFrame和Series的使用

    中的列表非常相似,但是它的每个元素的数据类型必须相同 创建 Series 的最简单方法是传入一个Python列表 import pandas as pd s = pd.Series([ ' banana...先将数据分组 对每组的数据再去进行统计计算如,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby...,形成二维数据聚合 df.groupby(['continent'])['country'].nunique() df.groupby('continent')['lifeExp'].max() # 可以使用...nunique 方法 计算Pandas Series的唯一值计数 # 可以使用 value_counts 方法来获取Pandas Series 的频数统计 df.groupby(‘continent’...数据中筛序出一列 df.groupby(‘continent’)[字段].mean() seriesGroupby对象再调用mean()/其它聚合函数

    10910

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    二、非聚合类方法   这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby(),首先读入数据,这里使用到的全美婴儿姓名数据,包含了1880-2018...#查看各列数据类型、数据框行列数 print(data.dtypes) print() print(data.shape) ?...三、聚合类方法   有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.2 利用agg()进行更灵活的聚合   agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典...值得注意的是,因为上例中对于不同变量的聚合方案不统一,所以会出现NaN的情况。

    5.1K60

    cuDF,能取代 Pandas 吗?

    cuDF (Pandas GPU 平替),用于加载、连接、聚合、过滤和其他数据操作。...cuDF介绍 cuDF是一个基于Apache Arrow列内存格式的Python GPU DataFrame库,用于加载、连接、聚合、过滤和其他数据操作。cuDF还提供了类似于pandas的API。...数据类型: cuDF支持Pandas中常用的数据类型,包括数值、日期时间、时间戳、字符串和分类数据类型。此外,cuDF还支持用于十进制、列表和“结构”值的特殊数据类型。...浮点运算: cuDF利用GPU并行执行操作,因此操作的顺序不总是确定的。这影响浮点运算的确定性,因为浮点运算是非关联的。...没有真正的“object”数据类型: 与Pandas和NumPy不同,cuDF不支持“object”数据类型,用于存储任意Python对象的集合。

    45412

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。...三、聚合类方法 有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。...: ['max','min'], 'count': ['mean','std']}) 值得注意的是,因为上例中对于不同变量的聚合方案不统一,所以会出现NaN的情况。

    5.9K31
    领券