首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python Pandas PK esProc SPL,谁才是数据预处理王者?

    SPL对函数式编程也进行了简化,其Lambda表达式甚至比SQL更加简单易用,适合非专业应用程序员。...相反,DataFrame适合表达二维数据,但同一列的数据类型不可变,不是真正的泛型,无法表达一般的多层Json。...使用Pandas时,经常用到Python的原生类库和第三类库numpy里的数据对象,包括Set(数学集合)、List(可重复集合)、Tuple(不可变的可重复集合)、Dict(键值对集合)、Array(...Pandas: df.loc[4,['NAME','SALARY']]=['aaa',1000] Pandas没有直接提供修改函数,而是用Series对象取出记录的部分字段,再用List去修改。...Pandas参数的表达能力就差多了,merge函数里表示DataFrame的选项只有left和right,因此只能进行两表关联。

    3.5K20

    Python 数据处理:Pandas库的使用

    本文内容:Python 数据处理:Pandas库的使用 ---- Python 数据处理:Pandas库的使用 1.Pandas 数据结构 1.1 Series 1.2 DataFrame 2.基本功能...因此,对返回的Series所做的任何就地修改全都会反映到源DataFrame上。通过Series的copy方法即可指定复制列。...=['a', 'b', 'c']) index = obj.index print(index) print(index[1:]) Index对象是不可变的,因此用户不能对其进行修改: import...Python切片运算不同,其末端是包含的: print(obj['b':'c']) 用切片可以对Series的相应部分进行设置: obj['b':'c'] = 5 print(obj) 用一个值或序列对...但也可以降序排序: print(frame.sort_index(axis=1, ascending=False)) 若要按值对Series进行排序,可使用其sort_values方法: import

    22.8K10

    Pandas数据处理——渐进式学习1、Pandas入门基础

    Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...、不同索引的数据轻松地转换为 DataFrame 对象; 基于智能标签,对大型数据集进行切片、花式索引、子集分解等操作; 直观地合并(merge)、**连接(join)**数据集; 灵活地重塑(reshape...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态系统的重要组成部分。 Pandas 已广泛应用于金融领域。...用这种方式迭代 DataFrame 的列,代码更易读易懂: for col in df.columns: series = df[col] 大小可变与数据复制 Pandas 所有数据结构的值都是可变的...,但数据结构的大小并非都是可变的,比如,Series 的长度不可改变,但 DataFrame 里就可以插入列。

    2.2K50

    【数据处理包Pandas】Series的创建与操作

    一、引入Pandas进行数据处理的必要性   NumPy 通过把大量同类数据组织成 ndarray 数组对象,并引入可以支持逐元素操作和广播机制的通用函数,为数值计算提供了许多不可或缺的功能。...但当需要处理更灵活的数据任务(如为数据添加标签、处理缺失值等),或者需要做一些不是对每个元素都进行广播映射的计算(如分组、透视表等)时,NumPy 的限制就非常明显了。   ...建立在 NumPy 数组结构上的 Pandas 库,为常见的各种数据处理任务提供了捷径。Pandas 有三个基本对象:Series、DataFrame 和 Index。...其中,Series 和 DataFrame 是 Pandas 中最常用的两个对象,分别对应于一维和二维数据的处理(Pandas 还有对三维甚至多维数据处理的 Panel 对象,但不太常用)。...对两个 Series 对象运算时,Pandas 会按标签对齐元素,即标签相同的两元素进行计算。 当某一方的标签不存在时,默认以NaN(Not a Number)填充。

    7900

    数据处理利器pandas入门

    想入门 Pandas,那么首先需要了解Pandas中的数据结构。因为Pandas中数据操作依赖于数据结构对象。Pandas中最常用的数据结构是 Series 和 DataFrame。...这里可以将 Series和 DataFrame分别看作一维数组和二维数组。 Series Series是一维标签数组,其可以存储任何数据类型,包括整数,浮点数,字符串等等。...data.head() data.tail() 数据选择 简单的了解了上述信息之后,我们对不同的空气质量要素进行操作时就要涉及到数据的选择。...由于Series只有一列,因此只需要对行进行索引操作即可,也支持基于标签和整数的位置索引方式。...sub.xs('1001A', axis=1) 简单绘图 在 Python可视化工具概览 中我们提到过数据处理和可视化一条龙服务的Pandas,Pandas不仅可以进行数据处理工作,而且其还封装了一些绘图方法

    3.7K30

    python数据分析——数据预处理

    如果数据存在严重的质量问题或缺失过多,那么即使进行了再精细的数据预处理也难以得到准确的分析结果。因此,在进行数据分析之前,我们需要对数据的质量和完整性进行充分的评估和清理。...,重复值的存在会对数据分析的结果产生不良影响,因此在进行数据分析前,对数据中的重复值进行处理是十分必要的。...分组处理:使用.groupby()方法可以按照指定的列对DataFrame进行分组,并进行相关的处理。...此外,该函数在处理大型的DataFrame时,可能会比较耗时,因此,对于较大的数据集,最好考虑使用其他更高效的方法进行筛选操作。...示例一 【例】构建series对象,其数据为[88,60,75],对应的索引为[1,2,3]。请利用Python对该series对象重新设置索引为[1,2,3,4,5]。

    14710

    (数据科学学习手札74)基于geopandas的空间数据分析——数据结构篇

    、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库,其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis、PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁...2 数据结构 geopandas作为pandas向地理分析计算方面的延拓,基础的数据结构延续了Series和DataFrame的特点,创造出GeoSeries与GeoDataFrame两种基础数据结构...Series,GeoSeries在被创建完成之后也拥有很多实用的地理属性,下面对其中较为常用的进行列举: area area属性返回与GeoSeries中每个元素一一对应的面积值(这里的面积单位和下文涉及的长度单位取决于投影坐标系...,这时几何对象列的名称可以自由设置,但一定要利用GeoDataFrame.set_geometry()方法将后添加的矢量列指定为矢量主列,因为每个GeoDataFrame若在定义之处没有指定矢量列,后将无法进行与适量信息挂钩的所有操作...图31 2.2.2 GeoDataFrame数据索引   作为pandas.DataFrame的延伸,GeoDataFrame同样支持pandas.DataFrame中的.loc以及.iloc对数据在行

    2.8K20

    一个数据集全方位解读pandas

    使用索引 使用.loc与.iloc 查询数据集 分类和汇总数据 对列进行操作 指定数据类型 数据清洗 数据可视化 一、安装与数据介绍 pandas的安装建议直接安装anaconda,会预置安装好所有数据分析相关的包...因此,我们将暂不使用庞大的NBA数据,从头开始构建一些较小的Pandas对象分析。...所以我们再对列使用索引操作符,对行使用访问方法.loc和.iloc。...例如,对于某些人来说,Elo评分可能是一个有趣的概念,但是本文不对其进行分析。...九、数据清洗 数据清洗主要是对空值与无效值或者异常值等数据进行处理。我们以缺失值为例。 处理包含缺失值的记录的最简单方法是忽略它们。

    7.4K20

    Python地信专题 | 基于geopandas的空间数据分析—数据结构篇

    其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis、PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁,打造纯Python式的空间数据处理工作流。...譬如定义多边形时坐标按顺序连线时穿过了之前定义的边就属于非法,因为geopandas对矢量对象的计算依赖于shapely,于是引进了属性用于判断每个几何对象是否合法。...是在pandas.DataFrame的基础上,加入空间分析相关内容进行改造而成。...因为每个GeoDataFrame若在定义之处没有指定矢量列,后将无法进行与适量信息挂钩的所有操作(GeoSeries所有属性都可同样作用于GeoDataFrame,因为所有空间操作实际上都直接作用于其矢量主列...的延伸,GeoDataFrame同样支持pandas.DataFrame中的.loc以及.iloc对数据在行、列尺度上进行索引和筛选。

    1.9K20

    Pandas 2.2 中文官方教程和指南(十一·二)

    注意 在应用可调用对象之前,将元组键解构为行(和列)索引,因此无法从可调用对象中返回元组以索引行和列。 从具有多轴选择的对象中获取值使用以下表示法(以.loc为例,但.iloc也适用)。...一个callable,请参见通过可调用进行选择。 一个行(和列)索引的元组,其元素是上述类型之一。...dtype: int64 当存在重复索引时,对 .reindex() 的调用将引发错误: In [116]: s = pd.Series(np.arange(4), index=['a', 'a',...dtype: int64 当存在重复索引时,对 .reindex() 的调用将引发错误: In [116]: s = pd.Series(np.arange(4), index=['a', 'a',...5 快速标量值的获取和设置 由于使用 [] 进行索引必须处理很多情况(单标签访问、切片、布尔索引等),因此为了弄清楚您要请求的内容,它需要一点额外的开销。

    25210

    【数据处理包Pandas】多级索引的创建及使用

    import numpy as np import pandas as pd 一、元组作为一级索引 如果想产生如下图所示的学生成绩表: 因为 DataFrame 的行索引/列索引要求是不可变的,因此考虑使用元组做索引是很自然的选择.../列索引的缺点是使用不够方便,举例说明如下: (一)示例1 使用元组索引查询时,对 Series 和 DataFrame 的操作不统一,后者需要对元组索引额外加中括号,而前者不用!...二、引入多级索引 (一)多级索引的创建 MultiIndex 对象是 Pandas 标准 Index 的子类,由它来表示多层索引业务。...注意:元组中不允许使用:,因此用slice(None)代替。 说明:多级索引的切片操作要求必须先对索引排序,因此才有上面的sort_index()函数调用。...sort_index()函数对索引进行排序。

    2100

    00.数据结构关于浮点数运算的越界问题1.数据结构2.Pandas的两种常用数据结构3.Series系列4.DataFrame数据框

    定义:如何对其定义? 限制:使用期有何限制? 访问:访问其内数据的方式是什么? 修改: 对其增删查改的方法什么?...2.Pandas的两种常用数据结构 类型 注释 Series 系列 DataFrame 数据框 使用前需要将pandas 模块引入 from pandas import Series, DataFrame...import pandas as pd 3.Series系列 类似一维数组(ndarray)的对象,由一组数据(各种NumPy数据类型)以及与之相关的数据标签(索引)组成,用于存储一行或一列数据。...index A 0 张三 1 李四 2 王五 Series对象本质上是NumPy的数组,因此NumPy的数组处理函数可以直接对Series使用。...3.1 创建Series Series同时具有数组和字典的功能,因此它也支持一些字典的方法。

    1.1K10

    《利用Python进行数据分析·第2版》第5章 pandas入门5.1 pandas的数据结构介绍5.2 基本功能5.3 汇总和计算描述统计5.4 总结

    虽然pandas采用了大量的NumPy编码风格,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的。而NumPy更适合处理统一的数值数组数据。...因此,对返回的Series所做的任何就地修改全都会反映到源DataFrame上。通过Series的copy方法即可指定复制列。...a', 'b', 'c'], dtype='object') In [79]: index[1:] Out[79]: Index(['b', 'c'], dtype='object') Index对象是不可变的...,因此用户不能对其进行修改: index[1] = 'd' # TypeError 不可变可以使Index对象在多个数据结构之间安全共享: In [80]: labels = pd.Index(np.arange...在实践中,这会导致许多边缘情况,数据的轴标签是整数,所以pandas团队决定创造loc和iloc运算符分别处理严格基于标签和整数的索引。 ix运算符仍然可用,但并不推荐。 ?

    6.1K70

    TypeError: unhashable type: dict

    当我们尝试对不可哈希(unhashable)的对象进行哈希操作时,就会出现TypeError: unhashable type的错误。...而其中一个常见的导致这个错误的原因是尝试对字典(dict)进行哈希操作。什么是哈希操作?哈希操作是指将一个对象映射为固定长度的唯一标识符(哈希值)的过程。...但是,由于字典是可变的,无法被哈希,因此我们需要将其转换为不可变的类型。...通过这样的处理,我们就能够在实际应用中解决TypeError: unhashable type: 'dict'错误,并正常地使用字典作为键值、集合元素或进行哈希操作。希望本示例代码对你有所帮助!...) # 输出: "Hello"print(str2) # 输出: "HELLO"不可变对象的不变性保证了其在多线程环境下的安全性,因为线程无法修改不可变对象的值。

    63340

    Pandas中的对象

    是广义的Numpy数组DataFrame是特殊的字典创建DataFrame对象Pandas的Index对象将Index看作不可变数组将Index看作有序集合 安装并使用Pandas import numpy...先来看看Pandas三个基本的数据结构: Series DataFrame Index Pandas的Series对象 Pandas的Series对象是一个带索引数据构成的一维数组,可以用一个数组创建Series...Series对象是一种显示定义的索引与数值关联 显示定义的索引让Series对象有了更加强大的能力。...a', 1:'b', 3:'c'}) 2 a 1 b 3 c dtype: object 每一种形式都可以通过显示指定索引筛选所需要的结果 # Series对象只会保留显示定义的键值对...Pandas 的 Index 对象是一个很有趣的数据结构,可以将它看作是一个不可变数组或有序集合 # 使用一个简单的列表创建Index对象 ind = pd.Index([2, 3, 5, 7, 11]

    2.7K30

    玩转Pandas,让数据处理更easy系列3

    01 回顾 前面介绍了Pandas最重要的两个类:Series和DataFrame,讲述了这两种数据结构常用的属性和操作,比如values,index, columns,索引,Series的增删改查,DataFrame...的增删改查,Series实例填充到Pandas中,请参考: 玩转Pandas,让数据处理更easy系列1 玩转Pandas,让数据处理更easy系列2 02 读入DataFrame实例 读入的方式有很多种...04 DataFrame遍历Series 读入或内存创建一个DataFrame实例:pd_data后,我们想根据某些条件,按照某个规则,对这些数据进行聚类,那么,一种比较直接的办法便是对pd_data遍历...分享一个面试题,记得当年我面试时,二面的面试官直接问题pd_data.iterrows()返回的对象是什么类型,不知道大家能说的上来吗。...再看下loc的API文档,可以看出bool数组也是可以的,我们又知道Series是数组和标签字典的组合。

    1.5K10

    数据导入与预处理-课程总结-01~03章

    数据清理主要是将"脏"数据变成"干净"数据的过程,该过程中会通过一系列的方法对“脏”数据进行处理,以达到清除冗余数据、规范数据、纠正错误数据的目的。...给定两个数值型的属性A和B,根据其属性值,可以用相 关系数度量一个属性在多大程度上蕴含另一个属性。 4. 数据冲突的检测与处理 对现实世界的同一实体,来自不同数据源的属性定义不同。...基础 猿创征文|数据导入与预处理-第3章-pandas基础 3.1 series 3.1.1 创建series对象 In [1]: import pandas as pd In [2]: ser_obj...使用索引对象操作数据 使用单层索引访问数据 无论是创建Series类对象还是创建DataFrame类对象,根本目的在于对Series类对象或DataFrame类对象中的数据进行处理,但在处理数据之前,需要先访问...pandas中可以使用[]、loc、iloc、at和iat这几种方式访问Series类对象和DataFrame类对象的数据。

    3.1K20

    Pandas 2.2 中文官方教程和指南(十二·一)

    创建一个 MultiIndex(层次化索引)对象 MultiIndex对象是标准Index对象的分层类比,通常在 pandas 对象中存储轴标签。...对 MultiIndex 进行排序 要有效地对 MultiIndex 对象进行索引和切片,它们需要被排序。与任何索引一样,您可以使用 sort_index()。...[(1, 'z')] Out[115]: jolie jim joe 1 z 0.53702 此外,如果尝试对未完全按字典顺序排序的内容进行索引,可能会引发: In [116]: dfm.loc...int64 dtype 的Index,对RangeIndex的操作,其结果无法由RangeIndex表示,但应具有整数 dtype,将转换为具有int64的Index。...因此,只有使用整数轴索引时,才能使用标签为基础的索引,例如.loc等标准工具。

    25610
    领券