首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas: groupby then count on NaN

Pandas是一个基于Python的数据分析库,提供了丰富的数据结构和数据分析工具。在Pandas中,groupby函数用于按照指定的列对数据进行分组,然后可以对分组后的数据进行各种操作,如计数、求和、平均值等。

在进行groupby操作时,如果存在NaN(缺失值),默认情况下会将其作为一个独立的分组进行处理。可以通过设置参数dropna=False来保留NaN值所在的分组。

下面是一个示例代码,演示了如何使用Pandas进行groupby操作并计算NaN值的数量:

代码语言:txt
复制
import pandas as pd

# 创建一个包含NaN值的DataFrame
data = {'A': [1, 2, 3, None, 5, 6],
        'B': [None, 2, 3, 4, None, 6]}
df = pd.DataFrame(data)

# 对列A进行分组,并计算NaN值的数量
result = df.groupby('A', dropna=False).size()

print(result)

输出结果为:

代码语言:txt
复制
A
1.0    1
2.0    1
3.0    1
NaN    1
5.0    1
6.0    1
dtype: int64

在上述示例中,我们创建了一个包含NaN值的DataFrame,并对列A进行分组。通过设置dropna=False,保留了NaN值所在的分组,并使用size函数计算了每个分组中NaN值的数量。

Pandas官方文档:https://pandas.pydata.org/

腾讯云相关产品和产品介绍链接地址:暂无推荐的腾讯云相关产品和产品介绍链接地址。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Pandas GroupBy 深度总结

    今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理。...']) 现在,如果我们尝试打印刚刚创建的两个 GroupBy 对象之一,我们实际上将看不到任何组: print(grouped) Output: <pandas.core.groupby.generic.DataFrameGroupBy...最常用的方法是 mean()、median()、mode()、sum()、size()、count()、min()、max()、std()、var()(计算每个的方差 group)、describe()...这里需要注意的是,transformation 一定不能修改原始 DataFrame 中的任何值,也就是这些操作不能原地执行 转换 GroupBy 对象数据的最常见的 Pandas 方法是 transform...将此数据结构分配给一个变量,我们可以用它来解决其他任务 总结 今天我们介绍了使用 pandas groupby 函数和使用结果对象的许多知识 分组过程所包括的步骤 split-apply-combine

    5.8K40

    玩转 PandasGroupby 操作

    作者:Lemon 来源:Python数据之道 玩转 PandasGroupby 操作 大家好,我是 Lemon,今天来跟大家分享下 pandasgroupby 的用法。...Pandasgroupby() 功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚。 今天,我们一起来领略下 groupby() 的魅力吧。...首先,引入相关 package : import pandas as pd import numpy as np groupby 的基础操作 经常用 groupbypandas 中 dataframe...Bob NaN 5 Portland Mallory 4.0 count() In [11]: df.groupby(["Name", "City"], as_index=False)['Val...对应 "B" 列的值分别是 "one","NaN","NaN",由于 count() 计数时不包括NaN值,因此 {'group1':'A', 'group2':'C'} 的 count 计数值为 1

    2K20

    Pandas分组groupby结合agg-transform

    groupby结合agg和transform使用 本文介绍的是分组groupby分组之后如何使用agg和transform 模拟数据 import pandas as pd import numpy as...811 7 4 小张 上半年 955 10 5 小张 上半年 975 11 6 小明 上半年 858 9 7 小明 上半年 993 11 8 小王 上半年 841 8 9 小王 下半年 967 7 groupby...+单个字段+单个聚合 求解每个人的总薪资金额: total_salary = df.groupby("employees")["salary"].sum().reset_index() total_salary...+单个字段+多个聚合 求解每个人的总薪资金额和薪资的平均数: 方法1:使用groupby+merge mean_salary = df.groupby("employees")["salary"].mean...+多个字段+单个聚合 针对多个字段的同时聚合: df.groupby(["employees","time"])["salary"].sum().reset_index() .dataframe

    20110

    Pandas对DataFrame单列多列进行运算(map, apply, transform, agg)

    , 例如: sumcount = df.groupby('col1')['col2'].transform(lambda x: x.sum() + x.count()) df['col1'].map(...4.聚合函数 结合groupby与agg实现SQL中的分组聚合运算操作,需要使用相应的聚合函数: df['col2'] = df.groupby('col1').agg({'col1':{'col1_mean...': mean, 'col1_sum‘': sum}, 'col2': {'col2_count': count}}) 上述代码生成了col1_mean, col1_sum与col2_count列。...分组中非Nan值的数量 sum 非Nan值的和 mean 非Nan值的平均值 median 非Nan值的算术中间数 std,var 标准差、方差 min,max 非Nan值的最小值和最大值 prob...非Nan值的积 first,last 第一个和最后一个非Nan值 到此这篇关于Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)的文章就介绍到这了

    15.4K41

    Pandas分组与聚合1.分组 (groupby)一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy二、GroupBy对象支持迭代操作三、GroupBy对象可以转换成

    文章来源:Python数据分析 1.分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程....groupby(df_obj['key1']))) 运行结果: <class 'pandas.core.groupby.SeriesGroupBy...(mapping_dict, axis=1).size()) print(df_obj2.groupby(mapping_dict, axis=1).count()) # 非NaN的个数 print(df_obj2...('key1').mean()) print(df_obj5.groupby('key1').size()) print(df_obj5.groupby('key1').count()) print(df_obj5...', 'std', 'count', peak_range])) # 默认列名为函数名 print(df_obj.groupby('key1').agg(['mean', 'std', 'count'

    23.9K51

    对比MySQL学习Pandasgroupby分组聚合

    01 MySQL和Pandas做分组聚合的对比说明 1)都是用来处理表格数据 不管是mysql,还是pandas,都是处理像excel那样的二维表格数据的。...接着就是执行group分组条件,对比pandas就是写一个groupby条件进行分组。...再接着就是执行select条件,聚合函数就是写在select后面的,对比pandas就是执行agg()函数,在其中针对不同的列执行count、max、min、sum、mean聚合函数。...③ pandas中代码执行如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\emp.xlsx") display(df) df = df.groupby("deptno...针对分组对象,我们既可以直接调用聚合函数sum()、mean()、count()、max()、min(),还可以调用分组对象的agg()方法,然后像agg()中传入指定的参数。

    2.9K10
    领券