例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...下图大致说明了一个简单的分组聚合过程。 语法 Pandas中的Groupby是一个强大的功能,用于将数据集按照指定的条件进行分组和聚合操作。...groupby的聚合函数 首先创建一个dataframe对象: 示例一 【例8】使用groupby聚合函数对数据进行统计分析。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引...它可以根据某些列的值将数据重塑为新的形式,使之更易于分析和理解。下面详细解释pivot()函数的用法和参数。
14622.406061 Name: stock_qty, dtype: float64 2、多列聚合 在一个操作中进行多个聚合。...sales.groupby("store")["stock_qty"].agg(["mean", "max"]) 4、对聚合结果进行命名 在前面的两个示例中,聚合列表示什么还不清楚。...x: round(x.sum() / 1000, 1) ) ) 17、apply函数 使用apply函数将Lambda表达式应用到每个组。...如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。 让我们首先添加一个缺少存储值的新行。...), "category": list("AAAABBBB"), "value": np.random.randint(10, 30, size=8) } ) 我们可以单独创建一个列
大家好,我是俊欣~ groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。...sales.groupby("store")["stock_qty"].agg(["mean", "max"]) output 4、对聚合结果进行命名 在前面的两个示例中,聚合列表示什么还不清楚。...x: round(x.sum() / 1000, 1) ) ) output 17、apply函数 使用apply函数将Lambda表达式应用到每个组。...如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。 让我们首先添加一个缺少存储值的新行。...category": list("AAAABBBB"), "value": np.random.randint(10, 30, size=8) } ) output 我们可以单独创建一个列
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。...sales.groupby("store")["stock_qty"].agg(["mean", "max"]) 4、对聚合结果进行命名 在前面的两个示例中,聚合列表示什么还不清楚。...lambda x: round(x.sum() / 1000, 1) ) ) 17、apply函数 使用apply函数将Lambda表达式应用到每个组。...如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。 让我们首先添加一个缺少存储值的新行。..."category": list("AAAABBBB"), "value": np.random.randint(10, 30, size=8) } ) 我们可以单独创建一个列
对象经过groupby分组后调用apply时,数据处理函数作用于groupby后的每个子dataframe上,即作用对象还是一个DataFrame(行是每个分组对应的行;列字段少了groupby的相应列...应用到Series的每个元素 ①将性别sex列转化为0和1数值,其中female对应0,male对应1。应用apply函数实现这一功能非常简单: ?...应用到DataFrame的每个Series DataFrame是pandas中的核心数据结构,其每一行和每一列都是一个Series数据类型。...应用到DataFrame groupby后的每个分组DataFrame 实际上,个人一直觉得这是一个非常有效的用法,相较于原生的groupby,通过配套使用goupby+apply两个函数,实现更为个性化的聚合统计功能...这里,再补充一个前期分享过的一片推文:Pandas用的6不6,来试试这道题就能看出来,实际上也是实现了相同的分组聚合统计功能。
例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...下表是经过优化的groupby方法: 2.1. groupby的聚合函数 首先创建一个dataframe对象: 【例8】使用groupby聚合函数对数据进行统计分析。...所有的列都会应用这组函数。 使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引...可以将数据分组,并使用apply和一个能够对各数据块调用fillna的函数即可。
使用to_excel方法,我们可以将DataFrame中的数据写入到新的Excel文件中: df.to_excel('output.xlsx', index=False) 实例:读取并写入新表格 下面是一个示例代码...(df['date_column']) 分组与聚合 Pandas还支持强大的分组与聚合操作,能够根据某列的值对数据进行分组,并对每个分组进行聚合计算。...# 根据某列的值进行分组,并计算平均值 grouped_data = df.groupby('category_column')['value_column'].mean() 数据可视化 除了数据处理,...Pandas提供了merge()函数,可以根据指定的列将两个表格合并成一个新的表格。...通过apply()方法,你可以将自定义函数应用到DataFrame的每一行或列。
本文将从基础概念、常见问题、常见报错及解决方案等方面,由浅入深地介绍如何使用Pandas的groupby和agg方法,并通过代码案例进行详细解释。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...groupby返回的是一个GroupBy对象,该对象本身并不包含任何聚合结果,而是提供了一个接口来应用各种聚合函数。 agg 方法 agg(aggregate的缩写)用于对分组后的数据进行聚合计算。...常见的聚合函数包括sum()、mean()、count()、min()、max()等。 常见问题 重复值处理:当分组键存在重复值时,默认情况下会根据这些重复值创建新的分组。...自定义函数需要接收一个Series作为输入,并返回一个标量值。 多个聚合函数 有时我们需要对同一列应用多个聚合函数。agg允许我们通过传递一个包含多个函数的列表来实现这一点。
第十章主要讲解的数据聚合与分组操作。对数据集进行分类,并在每一个组上应用一个聚合函数或者转换函数,是常见的数据分析的工作。 本文结合pandas的官方文档整理而来。 ?...笔记1:自定义的聚合函数通常比较慢,需要额外的开销:函数调用、数据重新排列等 import numpy as np import pandas as pd tips = pd.read_csv(path...) tips['tip_pct'] = tips['tip'] / tips['total_bill'] grouped = tips.groupby(['day','smoker']) # 根据两个属性先分组...不同的函数应用到一个或者多个列上 ?...笔记2:只有当多个函数应用到至少一个列时,DF才具有分层列 返回不含行索引的聚合数据:通过向groupby传递as_index=False来实现 数据透视表和交叉表 DF中的pivot-table方法能够实现透视表
('a',inplace=True,ascending=True) , inplace 表示排序的时候是否生成一个新的 dataFrame , ascending=True 表示升序,默认为升序,如果存在缺失的补值...df.loc[(df['city'] == 'beijing') & (df['pr'] >= 4000), 'sign'] = 1 对 category 字段的值依次进行分列,并创建数据表,索引值...beijing 和 shanghai ,然后将符合条件的数据提取出来pd.DataFrame(category.str[:3])提取前三个字符,并生成数据表 数据筛选 使用与、或、非三个条件配合大于、...('Country').agg(num_agg)) 补充 对于聚合方法的传入和传出,可以使用 ['min'] ,也可以使用 numpy 中的方法,比如 numpy.min ,也可以传入一个方法,比如:...默认会将分组后将所有分组列放在索引中,但是可以使用 as_index=False 来避免这样。
().count 与 Groupby().size 如果你想获得 Pandas 的一列的计数统计,可以使用groupby和count组合,如果要获取2列或更多列组成的分组的计数,可以使用groupby和...我们经常会使用groupby对数据进行分组并统计每组的聚合统计信息,例如计数、平均值、中位数等。...DataFrame中某个字符串字段(列)展开为一个列表,然后将列表中的元素拆分成多行,可以使用str.split()和explode()组合,如下例: import pandas as pd df...DataFrame 在我们处理数据的时候,有时需要根据某个列进行计算得到一个新列,以便后续使用,相当于是根据已知列得到新的列,这个时候assign函数非常方便。...在以下示例中,创建了一个新的排名列,该列按学生的分数对学生进行排名: import pandas as pd df = pd.DataFrame({'Students': ['John', 'Smith
data.groupby('driver_gender' )[['driver_age']].mean() 在聚合后一维切片会得到 pandas.Series. data.groupby...('mean') 通过unstack重排数据表 如果原表只有一级索引,unstack就将每一个列都分出来,然后全部纵向叠加在一起,每一个列名作为新的一级索引,原本的索引作为二级索引。...由于二维的 GroupBy 应用场景非常普遍,因此 Pandas 提供了一个快捷方式 pivot_table 来快速解决多维的累计分析任务。...保留"driver_gender",对剩下列全部转换,并给设置对列定义列名。...下面演示一个平时较为头疼的事情。即将两个name删掉。下面介绍一个常见的方法。
之后所接的聚合函数方式也有两种:直接+聚合函数或者agg()+字典形式聚合函数,这与pandas中的用法几乎完全一致,所以不再赘述,具体可参考Pandas中groupby的这些用法你都知道吗?一文。...这里补充groupby的两个特殊用法: groupby+window时间开窗函数时间重采样,对标pandas中的resample groupby+pivot实现数据透视表操作,对标pandas中的pivot_table...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('...并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame
为了达到我们的目的,我们将使用具有转换功能的groupby来创建新的聚合功能。...注意:我们可以对任何类别变量执行groupby函数,并执行任何聚合函数,例如mean, median, mode, count等。...这就是我们如何创建多个列的方式。在执行这种类型的特征工程时要小心,因为在使用目标变量创建新特征时,模型可能会出现偏差。...它取决于问题陈述和日期时间变量(每天,每周或每月的数据)的频率来决定要创建的新变量。 尾注 那就是pandas的力量;仅用几行代码,我们就创建了不同类型的新变量,可以将模型的性能提升到另一个层次。...没有传统的方式或类型可以创建新特征,但是pandas具有多种函数,可以使你的工作更加舒适。 我强烈建议你选择任何数据集,并自行尝试所有列出的技术,并在下面评论多少以及哪种方法对你的帮助最大。
pandas 的核心是名叫DataFrame的对象类型- 本质上是一个值表,每行和每列都有一个标签。...1.5 分组使用特定条件对行进行分组并聚合其数据时。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。...通过告诉 Pandas 将一列除以另一列,它识别到我们想要做的就是分别划分各个值(即每行的“Plays”值除以该行的“Listeners”值)。
连续属性变换成分类属性涉及两个子任务:决定需要多少个分类变量,以及确定如何将连续属性值映射到这些分类值。...基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...() 2.3.1.1 分组操作 pandas中使用groupby()方法根据键将原数据拆分为若干个分组。...该参数的默认值为0,代表沿列方向操作。 level:表示标签索引所在的级别,默认为None。 as_index:表示聚合后新数据的索引是否为分组标签的索引,默认为True。...使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。
本教程将详细介绍Pandas的各个方面,包括基本的数据结构、数据操作、数据过滤和排序、数据聚合与分组,以及常见的数据分析任务。 什么是Pandas?...在Pandas中,可以使用pivot_table函数来创建数据透视表,通过指定行、列和聚合函数来对数据进行分组和聚合。...创建数据透视表 首先,我们创建一个包含姓名、年份、销售额和利润的DataFrame: import pandas as pd data = {'Name': ['Alice', 'Bob', 'Charlie...) 使用pd.to_datetime函数将日期字符串转换为日期对象,并将其赋值给新列OrderDate。...然后,使用dt.month提取出日期对象的月份信息,将其赋值给新列Month。
1 groupby()核心用法 (1)根据DataFrame本身的某一列或多列内容进行分组聚合,(a)若按某一列聚合,则新DataFrame将根据某一列的内容分为不同的维度进行拆解,同时将同一维度的再进行聚合...,(b)若按某多列聚合,则新DataFrame将是多列之间维度的笛卡尔积,即:新DataFrame具有一个层次化索引(由唯一的键对组成),例如:“key1”列,有a和b两个维度,而“key2”有one和...two两个维度,则按“key1”列和“key2”聚合之后,新DataFrame将有四个group; 注意:groupby默认是在axis=0上进行分组的,通过设置axis=1,也可以在其他任何轴上进行分组...范例一:根据DataFrame本身的某一列或多列内容进行分组聚合 #创建原始数据集 import pandas as pd import numpy as np df=pd.DataFrame({...) 按key1、key2进行分组,并计算data1列的平均值,聚合表不堆叠 #将数据从“花括号”格式转为“表格”格式,unstack即“不要堆叠” df2=df['data1'].groupby([df
现在,当我们尝试创建新列时,将引发一个错误,警告我们有重复项。...它将两个聚合函数sum和mean中的每一个应用于每个列,从而每组返回四个列。 步骤 3 进一步进行,并使用字典将特定的聚合列映射到不同的聚合函数。 请注意,size聚合函数返回每个组的总行数。.../master-pandas/img/00120.jpeg)] 工作原理 当使用agg方法对多个列执行聚合时,pandas 将创建一个具有两个级别的索引对象。...我们构建了一个新函数,该函数计算两个 SAT 列的加权平均值和算术平均值以及每个组的行数。 为了使apply创建多个列,您必须返回一个序列。 索引值用作结果数据帧中的列名。...merge方法提供了类似 SQL 的功能,可以将两个数据帧结合在一起。 将新行追加到数据帧 在执行数据分析时,创建新列比创建新行更为常见。
('gender')['age'].mean() # 按照性别和年龄分组,统计人数 df.groupby(['gender', 'age'])['name'].count() 交叉表分析: # 构造一个交叉表...', 'age']) 对 Series 去重: # 对 'name' 列进行去重 df['name'].drop_duplicates() 数据合并 横向(按列)合并 DataFrame: # 创建一个新的...Jerry', 'Lucy', 'Amy'], 'score': [80, 90, 85, 95]} other_df = pd.DataFrame(other_data) # 将两个...DataFrame 在列上合并 pd.concat([df, other_df], axis=1) 纵向(按行)合并 DataFrame: # 创建一个新的 DataFrame other_data...'age': [19, 20], 'gender': ['F', 'M']} other_df = pd.DataFrame(other_data) # 将两个
领取专属 10元无门槛券
手把手带您无忧上云