stream was reset: CANCEL
目录 Pandas 排序方法入门 准备数据集 熟悉 .sort_values() 熟悉 .sort_index() 在单列上对 DataFrame 进行排序 按升序按列排序 更改排序顺序 选择排序算法...在多列上对 DataFrame 进行排序 按升序按多列排序 更改列排序顺序 按降序按多列排序 按具有不同排序顺序的多列排序 根据索引对 DataFrame 进行排序 按升序按索引排序 按索引降序排序 探索高级索引排序概念...在本教程结束时,您将知道如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index...在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...按升序按多列排序 要在多个列上对 DataFrame 进行排序,您必须提供一个列名称列表。
在本教程结束时,您将知道如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index...在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...按升序按多列排序 要在多个列上对 DataFrame 进行排序,您必须提供一个列名称列表。...以下代码基于现有mpgData列创建了一个新列,映射True了mpgData等于Y和NaN不等于的位置: >>> >>> df["mpgData_"] = df["mpgData"].map({"Y":...在本教程中,您学习了如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index(
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...,在 pandas 中,不管是数值或是文本的条件统计,本质都是构造条件 bool 列,之后的处理是一样的。...df[cond] ,相当于如下操作: - df[cond] 相当于 df[df.age > 30] - 相当于在辅助列上做筛选,把 true 值的行筛选出来!...是的,智能表格更能体现,如下: - 创建表格 - 在表格旁边输入公式 - 注意此时公式中的引用不是单元格地址,而是直接以列名显示 - 这个地方与 pandas 非常相似,这是因为他们都是在表达,你在操作一个有结构的表格..."看看各个年龄段,男女的生还情况": - 简单让 pandas 按数据中的年龄,平均划分成4段 - 大概可以看出,男性的生还率低于女性,特别是20到40岁这个年龄段 - 更多针对泰坦尼克号沉船事件数据的详细分析
PyCon 2019,Pandas 数据科学最佳实践 本文基于 Kevin 于 2019 年 7 月推出的最新视频教程,汇总了他 5 年来最喜欢的 25 个 pandas 操作技巧,希望大家喜欢。...目录 查看 pandas 及其支持项的版本 创建 DataFrame 重命名列 反转行序 反转列序 按数据类型选择列 把字符串转换为数值 优化 DataFrame 大小 用多个文件建立 DataFrame...操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...把字符串分割为多列 创建一个 DataFrame 示例。 ? 把姓名列分为姓与名两列,用 str.split() 方法,按空格分割,并用 expand 关键字,生成一个新的 DataFrame。 ?...要把第二列转为 DataFrame,在第二列上使用 apply() 方法,并把结果传递给 Series 构建器。 ?
此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...,在 pandas 中,不管是数值或是文本的条件统计,本质都是构造条件 bool 列,之后的处理是一样的。...df[cond] ,相当于如下操作: - df[cond] 相当于 df[df.age > 30] - 相当于在辅助列上做筛选,把 true 值的行筛选出来!...是的,智能表格更能体现,如下: - 创建表格 - 在表格旁边输入公式 - 注意此时公式中的引用不是单元格地址,而是直接以列名显示 - 这个地方与 pandas 非常相似,这是因为他们都是在表达,你在操作一个有结构的表格..."看看各个年龄段,男女的生还情况": - 简单让 pandas 按数据中的年龄,平均划分成4段 - 大概可以看出,男性的生还率低于女性,特别是20到40岁这个年龄段 - 更多针对泰坦尼克号沉船事件数据的详细分析
9999 x 12数据集,是使用Faker创建的,我在最后也会提供本文的所有源代码。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...我们还可以在一个或多个列上包含一些复杂的计算。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month == 8 and OrderDate.dt.year == 2021 and OrderDate.dt.day >=15") output dt很好用并且可以在同一列上结合了多个条件
) 它是一个简单的9999 x 12数据集,是使用Faker创建的,我在最后也会提供本文的所有源代码。...而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。...我们还可以在一个或多个列上包含一些复杂的计算。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串
() 它是一个简单的9999 x 12数据集,是使用Faker创建的,我在最后也会提供本文的所有源代码。...而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。...我们还可以在一个或多个列上包含一些复杂的计算。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串
目录 查看 pandas 及其支持项的版本 创建 DataFrame 重命名列 反转行序 反转列序 按数据类型选择列 把字符串转换为数值 优化 DataFrame 大小 用多个文件建立 DataFrame...操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。 还有一种简单的方式可以一次性重命名所有列,即,直接为列的属性赋值。 ?...把字符串分割为多列 创建一个 DataFrame 示例。 ? 把姓名列分为姓与名两列,用 str.split() 方法,按空格分割,并用 expand 关键字,生成一个新的 DataFrame。 ?...要把第二列转为 DataFrame,在第二列上使用 apply() 方法,并把结果传递给 Series 构建器。 ?
标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...图1 创建一个辅助函数 现在,让我们创建一个取平均值的函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在列中对每个学生进行循环?不!...注意下面的代码,我们只在包含平均值的三列上应用函数。因为我们知道第一列包含字符串,如果我们尝试对字符串数据应用letter_grade()函数,可能会遇到错误。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。
方式一: 使用时间列上普通索引 方式二:使用虚拟列,在虚拟列上添加索引 方式三:使用函数索引 方式四:使用表达式默认值 总结 前言 独孤九剑,重剑无锋,大巧不工,通晓剑意,无所施而不可。...测试案例: a) 创建测试表t_wang,导入一些测试数据,在时间列创建一个普通索引 # 查看表结构,测试表的时间列有个普通索引 MySQL [test]> show create table t_wang...实际上在MySQL 8.0中创建函数索引时,MySQL会自动在表上创建一个隐藏的虚拟列,然后在虚拟列上创建索引。这里注意:虚拟列是不实际占用空间的,但是函数索引是需要实际占据空间的。...我们可以在时间列上加上普通索引,然后将系统上线使用以来的每年4月数据都遍历一下。...将基于列的表达式计算值作为默认值,可以实现类似虚拟列的能力。 # 向表中添加一列,将时间列的表达式作为该列的默认值;然后再在该列添加一个普通索引。
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一篇文章关于合并多个 Excel 数据,许多小伙伴似乎对此比较感兴趣,问我是否可以合并不规范的数据...: - 加载时让 pandas 不要把首行作为表头 - 查找前 n 行数据,找到内容有符合表头的行,把该行作为表头 - 把无用行与列去掉 本系列多次强调,编程语言的作用是能让你把重复逻辑封装,以便日后重复使用...loc[:,cols]:获取指定的列 > 这里涉及多种 pandas 知识,希望系统学习这些知识,我只能推荐你去看看我的 pandas 专栏 看看怎么调用吧: - 这里的代码与本系列上一节基本一样...- 在使用 pd.read_excel 加载数据时,设置 header=None (红线) ,让其不把任何数据设置为表头 - 加载数据后,调用之前定义的方法 reset_header 调整表格(绿线)
有关更多数据文件的读取将在第三章介绍,本节介绍从对象和文件创建数据框的方式,具体如表1所示: 表1 Pandas创建数据对象 方法用途示例示例说明read_table read_csv read_excel...'col2': ['a', 'b', 'a'], 'col3': [True, True, False]} In: data2 = pd.DataFrame.from_dict(data_dict)基于字典创建数据框...常见的数据切片和切换的方式如表3所示: 表3 Pandas常用数据切分方法 方法用途示例示例说明[['列名1', '列名2',…]]按列名选择单列或多列In: print(data2[['col1','...到n且列索引在j到k间的记录In: print(data2.iloc[0:2,0:1]) Out: col1 0 2 1 1选取行索引在[0:2)列索引在[0:1)中间的记录...的数据预处理基于整个数据框或Series实现,整个预处理工作包含众多项目,本节列出通过Pandas实现的场景功能。
此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一篇文章关于合并多个 Excel 数据,许多小伙伴似乎对此比较感兴趣,问我是否可以合并不规范的数据...: - 加载时让 pandas 不要把首行作为表头 - 查找前 n 行数据,找到内容有符合表头的行,把该行作为表头 - 把无用行与列去掉 本系列多次强调,编程语言的作用是能让你把重复逻辑封装,以便日后重复使用...loc[:,cols]:获取指定的列 > 这里涉及多种 pandas 知识,希望系统学习这些知识,我只能推荐你去看看我的 pandas 专栏 看看怎么调用吧: - 这里的代码与本系列上一节基本一样...- 在使用 pd.read_excel 加载数据时,设置 header=None (红线) ,让其不把任何数据设置为表头 - 加载数据后,调用之前定义的方法 reset_header 调整表格(绿线)
PyQt5入门级超详细教程 前言 接序篇:【Python篇】PyQt5 超详细教程——由入门到精通(序篇) 建议把代码复制到pycharm等IDE上面看实际效果,方便理解嗷❤️ 第4部分:事件处理与信号槽机制...在 PyQt5 中,信号(Signal) 和 槽(Slot) 是处理事件和交互的核心机制。信号代表某个事件的发生,而槽是信号触发后执行的函数。 信号:信号是控件发出的消息,用来通知外界某个事件的发生。...你可以将数据组织为行和列,类似于 Excel 表格或者 pandas 的 DataFrame。在应用程序中,表格控件非常适合展示结构化数据,如数据库查询结果、文件数据等。...这些列头将显示在表格的顶部,帮助用户了解每一列的数据含义。...通过 setItem() 方法,我们将每条记录中的姓名和年龄填充到相应的行和列中。 6.4 使用 pandas 与 QTableWidget 在处理大量数据时,pandas 是一个非常强大的库。
unempl 0 2012 VA 5.0 NaN 1 2013 VA 5.1 NaN 2 2014 VA 5.2 6.0 3 2014 MD 4.0 6.0 4 2015 MD 4.1 6.1 对不存在的新列赋值来创建新列...在DataFrame的列上匹配Series的索引,并向下广播行: ser_8 = df_10.ix[0] df_11 = df_10 - ser_8 df_11 a b c d 0 0.000000...0.000000 NaN NaN -1.000000 NaN 1 -0.003930 NaN NaN -0.907776 NaN 2 -0.111226 NaN NaN -0.603347 NaN 使用算术方法,在列上广播并匹配行...two 8 9 10 11 按照索引排序DaraFrame: df_12.sort_index() c a b d one 4 5 6 7 three 0 1 2 3 two 8 9 10 11 按列倒序排序...1 4.5 3.0 1.0 2 3.0 4.0 7.0 3 2.0 2.0 4.5 4 4.5 5.5 3.0 5 6.5 7.5 2.0 6 6.5 7.5 4.5 7 8.0 5.5 7.0 在列上
而使系统容错的最常用方法是使用副本技术: 单Leader多Follower机制 在单Leader多Follower机制之中,Leader拥有主副本,Follower在其他节点上维护数据的备份副本。...两个节点有时可能具有相同的计数器值,但在计数器值之中都包含节点id,所以每个计数器值都可以认为是唯一的时间戳。...Lamport时间戳没有确切的物理时间,但它可以分布式系统之中的事件排序:存在两个时间戳,一个更大计数器的时间戳是更新的值;如果计数器的值是相同的,一个更大的节点ID是更大的时间戳。...但是为了确保没有其他节点在同时在较早的时间创建帐户,所以节点不得不与其他每个节点通信进行确认。如果出现网络问题,其他节点中的一个已经失效或无法到达,则系统也将失效。...全序广播 全序广播的机制是使用:通过单Leader多Follower机制,在Leader节点上对所有操作进行排序,从而决定了整个操作顺序,并将操作顺序进行广播。
4 pandas基本功能 4.1-4.5见之前文章 4.6 排名 排名这个功能目前我用的不怎么多,但还是简单说明一下。排名用到了rank方法。...2.000000 -2.500000 75% 4.500000 -2.250000 max 7.000000 -2.000000 对于任何方法,都有axis和skipna这两个参数,在具体情况中具体使用...;利用corrwith来计算每一列对某一列的相关性,例如frame.corrwith(frame['two'])计算每一列对two列的的相关性,也可以传入axis='columns'逐行计算。...,数值则是不同值在每个列出现次数。...至此,pandas基础操作已经全部完成,熟练运用这些方法能大大减少编程的复杂度,也能提高效率;下一篇将对时间类型做一个专题。
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节已经介绍了最简单的 shift 方法应用,这一节将结合其他技巧,解决诸如"某城市一年最大连续没下雨天数...到 G列 是辅助列 - D列:是C列 的下位移列(不理解的看上期文章) - E列:对比 C列 与 D列 是否不一样 - F列:对 E列 的结果数值化,True 为1,False 为0 - G列:累计求和...分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现 现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单: - 行2:简单完成 - df.下雨...= df.下雨) 相当于 Excel 操作中的 E列 - .cumsum() 相当于 Excel 操作中的 G列 接下来是分组统计,pandas 的分组其实不需要把辅助列加到 DataFrame 上的
领取专属 10元无门槛券
手把手带您无忧上云