首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas:根据公共列名将多个数据框中的列提取到新的数据框中

Pandas是一个开源的数据分析和数据处理工具,它提供了丰富的数据结构和数据分析函数,可以方便地进行数据清洗、转换、分析和可视化等操作。

对于根据公共列名将多个数据框中的列提取到新的数据框中,可以使用Pandas的merge函数或join函数来实现。这两个函数可以根据指定的公共列名将多个数据框进行合并,并提取出指定的列。

具体步骤如下:

  1. 导入Pandas库:在Python脚本中导入Pandas库,以便使用其中的函数和数据结构。
代码语言:txt
复制
import pandas as pd
  1. 创建多个数据框:根据需要,创建多个数据框,并确保它们包含公共列名。
代码语言:txt
复制
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})
df3 = pd.DataFrame({'A': [13, 14, 15], 'B': [16, 17, 18]})
  1. 合并数据框:使用merge函数或join函数将多个数据框合并,并根据公共列名提取指定的列。
代码语言:txt
复制
merged_df = pd.merge(df1, df2, on='A')

或者

代码语言:txt
复制
merged_df = df1.join(df2['B'], on='A')

在上述代码中,我们假设公共列名为'A',将df1和df2两个数据框根据'A'列进行合并,并提取出df2的'B'列。

  1. 提取到新的数据框中:将合并后的数据框中的指定列提取到新的数据框中。
代码语言:txt
复制
new_df = merged_df[['A', 'B']]

在上述代码中,我们假设需要提取的列为'A'和'B',将合并后的数据框merged_df中的这两列提取到新的数据框new_df中。

至此,根据公共列名将多个数据框中的列提取到新的数据框中的操作就完成了。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云数据库 TencentDB:https://cloud.tencent.com/product/cdb
  • 腾讯云数据万象 CI:https://cloud.tencent.com/product/ci
  • 腾讯云人工智能 AI:https://cloud.tencent.com/product/ai
  • 腾讯云物联网 IoV:https://cloud.tencent.com/product/iothub
  • 腾讯云移动开发 MSDK:https://cloud.tencent.com/product/msdk
  • 腾讯云存储 COS:https://cloud.tencent.com/product/cos
  • 腾讯云区块链 TBaaS:https://cloud.tencent.com/product/tbaas
  • 腾讯云元宇宙 TKE:https://cloud.tencent.com/product/tke

请注意,以上链接仅供参考,具体选择产品时需要根据实际需求进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

seaborn可视化数据多个元素

seaborn提供了一个快速展示数据元素分布和相互关系函数,即pairplot函数,该函数会自动选取数据中值为数字元素,通过方阵形式展现其分布和关系,其中对角线用于展示各个元素分布情况...,剩余空间则展示每两个元素之间关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据3元素进行可视化,对角线上,以直方图形式展示每元素分布,而关于对角线堆成上,下半角则用于可视化两之间关系,默认可视化形式是散点图,该函数常用参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据中所有的数值进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据多个数值型元素关系,在快速探究一组数据分布时,非常好用。

5.2K31
  • 【Python】基于某些删除数据重复值

    subset:用来指定特定根据指定数据去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...从结果知,参数为默认值时,是在原数据copy上删除数据,保留重复数据第一条并返回数据。 感兴趣可以打印name数据,删重操作不影响name值。...从结果知,参数keep=False,是把原数据copy一份,在copy数据删除全部重复数据,并返回数据,不影响原始数据name。...原始数据只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到数据。 想要根据更多数去重,可以在subset添加。...如需处理这种类型数据去重问题,参见本公众号文章【Python】基于多组合删除数据重复值。 -end-

    19.4K31

    【Python】基于多组合删除数据重复值

    最近公司在做关联图谱项目,想挖掘团伙犯罪。在准备关系数据时需要根据组合删除数据重复值,两中元素顺序可能是相反。...本文介绍一句语句解决多组合删除数据重复值问题。 一、举一个小例子 在Python中有一个包含3数据,希望根据name1和name2组合(在两行顺序不一样)消除重复项。...二、基于两删除数据重复值 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...由于原始数据是从hive sql跑出来,表示商户号之间关系数据,merchant_r和merchant_l存在组合重复现象。现希望根据这两组合消除重复项。...从上图可以看出用set替换frozense会报不可哈希错误。 三、把代码推广到多 解决多组合删除数据重复值问题,只要把代码取两代码变成多即可。

    14.7K30

    根据数据源字段动态设置报表数量以及宽度

    在报表系统,我们通常会有这样需求,就是由用户来决定报表需要显示数据,比如数据源中共有八数据,用户可以自己选择在报表显示哪些,并且能够自动调整列宽度,已铺满整个页面。...本文就讲解一下ActiveReports该功能实现方法。 第一步:设计包含所有报表模板,将数据所有先放置到报表设计界面,并设置你需要宽,最终界面如下: ?...第二步:在报表后台代码添加一个Columns属性,用于接收用户选择,同时,在报表ReportStart事件添加以下代码: /// /// 用户选择列名称...].Width; // 设置控件坐标 if (tmp == null) { // 设置需要显示第一坐标...源码下载: 动态设置报表数量以及宽度

    4.9K100

    Pandas更改数据类型【方法总结】

    例如,上面的例子,如何将2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每类型?...理想情况下,希望以动态方式做到这一点,因为可以有数百个,明确指定哪些是哪种类型太麻烦。可以假定每都包含相同类型值。...DataFrame 如果想要将这个操作应用到多个,依次处理每一是非常繁琐,所以可以使用DataFrame.apply处理每一。...)将被单独保留。...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型DataFrame转换为更具体类型。

    20.3K30

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...实际上我们没有删除,而是创建了一个数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。...但是,如果需要删除多个,则需要使用循环,这比.drop()方法更麻烦。 重赋值 当数据框架只有几列时效果最好;或者数据框架有很多,但我们只保留一些

    7.2K20

    【R语言】根据映射关系来替换数据内容

    前面给大家介绍过☞R替换函数gsub,还给大家举了一个临床样本分类具体例子。今天我们接着来分享一下如何根据已有的映射关系来对数据数据进行替换。...例如将数据转录本ID转换成基因名字。我们直接结合这个具体例子来进行分享。...假设我们手上有这个一个转录本ID和基因名字之间对应关系,第一是转录本ID,第二是基因名字 然后我们手上还有一个这样bed文件,里面是对应5个基因CDs区域在基因组上坐标信息。...接下来我们要做就是将第四注释信息,从转录本ID替换成相应基因名字。我们给大家分享三种不同方法。...=1) #读入CDs区域坐标文件 bed=read.table("5gene_CDs.bed",sep="\t") #从第四提取转录本信息,这里用了正则表达式, #括号匹配到内容会存放在\\1

    4K10

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行值 (2)读取第二值 (3)同时读取某行某 (4)读取DataFrame某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    用过Excel,就会获取pandas数据框架值、行和

    在Python数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...每种方法都有其优点和缺点,因此应根据具体情况使用不同方法。 点符号 可以键入“df.国家”以获得“国家”,这是一种快速而简单获取方法。但是,如果列名包含空格,那么这种方法行不通。...在pandas,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和交集。...图9 要获得第2行和第4行,以及其中用户姓名、性别和年龄,可以将行和列作为两个列表传递,如下图所示。 图10 记住,df[['用户姓名','年龄','性别']]返回一个只有三数据框架。

    19.1K60

    利用pandas我想提取这个楼层数据,应该怎么操作?

    一、前言 前几天在Python白银交流群【东哥】问了一个Pandas数据处理问题。问题如下所示:大佬们,利用pandas我想提取这个楼层数据,应该怎么操作?...其他【暂无数据】这些数据需要删除,其他有数字就正常提取出来就行。 二、实现过程 这里粉丝目标应该是去掉暂无数据,然后提取剩下数据楼层数据。看需求应该是既要层数也要去掉暂无数据。...目标就只有一个,提取楼层数据就行,可以直接跳过暂无数据这个,因为暂无数据里边是没有数据,相当于需要剔除。...如果你也有类似这种数据分析小问题,欢迎随时来交流群学习交流哦,有问必答! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。

    11710

    numpy和pandas库实战——批量得到文件夹下多个CSV文件第一数据并求其最值

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件第一数据并求其最大值和最小值,大家讨论甚为激烈,在此总结了两个方法,希望后面有遇到该问题小伙伴可以少走弯路...通常我们通过Python来处理数据,用比较多两个库就是numpy和pandas,在本篇文章,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件第一数据并求其最大值和最小值代码如下图所示。 ? 4、通过pandas库求取结果如下图所示。 ?...通过该方法,便可以快速取到文件夹下所有文件第一最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件第一数据并求其最大值和最小值代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件第一数据最大值和最小值,当然除了这两种方法之外,肯定还有其他方法也可以做得到,欢迎大家积极探讨

    9.5K20

    如何在 Pandas 创建一个空数据帧并向其附加行和

    Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据有效实现。数据帧是一种二维数据结构。在数据数据以表格形式在行和对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据。...在本教程,我们将学习如何创建一个空数据帧,以及如何在 Pandas 向其追加行和。...Pandas.Series 方法可用于从列表创建系列。值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据帧进行操作的人来说非常有帮助。

    27030

    数据看球】2018 年世界杯夺冠预测,CDA带你用机器学习来分析

    加载数据集 通过调用两个数据集world_cup.head()和results.head(),确保数据集加载到数据,如下所示: ?...现在,让我们在结果数据集中添加净胜球数和结果。 ? 查看结果数据。 ? 然后我们将使用数据子集。其中包括只有尼日利亚参加比赛。这将有助于我们了解某支球队特色,并拓展运用到其他参赛球队。...使用 pandas,get_dummies()函数。从而用one-hot(数字“1”和“0”)代替分类,确保加载到Scikit-learn模式。...由于世界杯不分“主队”或“客队”球队,他们都将归属到“home_teams”。然后,根据每个团队名将球队添加到预测数据集中。下一步将创建虚拟变量并部署机器学习模型。...根据模型预测,巴西很可能赢得本次世界杯。 结语 研究和改进空间: 1.数据集。为了改进数据集,你可以使用国际足联数据来评估球队每个球员水平。 2.混淆矩阵能够用于分析模型分析错误情况。

    50220

    Python数据处理从零开始----第二章(pandas)⑨pandas读写csv文件(4)

    如何在pandas写入csv文件 我们将首先创建一个数据。我们将使用字典创建数据框架。...image.png 如上图所示,当我们不使用任何参数时,我们会得到一个。此列是pandas数据index。我们可以使用参数index并将其设置为false以除去此列。...如何将多个数据帧读取到一个csv文件 如果我们有许多数据帧,并且我们想将它们全部导出到同一个csv文件。 这是为了创建两个,命名为group和row num。...重要部分是group,它将标识不同数据帧。在代码示例最后一行,我们使用pandas数据帧写入csv。...列表keys参数(['group1'、'group2'、'group3'])代表不同数据来源。我们还得到“row num”,其中包含每个原数据行数: ? image.png

    4.3K20
    领券