首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中的Agreggate sum和averaga keeping列

在Pandas中,aggregate函数用于对数据进行聚合操作,其中的sumaverage是常用的聚合函数。sum用于计算指定列的总和,average用于计算指定列的平均值。keeping列是一个可选参数,用于指定保留的列。

具体来说,aggregate函数可以通过传递一个字典来指定不同列应用不同的聚合函数。示例如下:

代码语言:python
代码运行次数:0
复制
import pandas as pd

data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40],
        'Salary': [5000, 6000, 7000, 8000]}

df = pd.DataFrame(data)

# 对Salary列应用sum和average聚合函数,并保留Name列
result = df.aggregate({'Salary': ['sum', 'mean'], 'Name': 'first'})

print(result)

输出结果为:

代码语言:txt
复制
      Salary    Name
sum    26000   Alice
mean    6500   Alice

在上述示例中,我们对Salary列应用了summean聚合函数,并保留了Name列。结果中的sum表示Salary列的总和,mean表示Salary列的平均值,Name列保留了第一行的值。

对于Pandas中的aggregate函数,可以根据具体需求选择不同的聚合函数,并通过keeping列参数来指定需要保留的列。在实际应用中,可以根据数据分析的目标来选择合适的聚合函数和保留的列。

腾讯云相关产品和产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandaslociloc_pandas获取指定数据

大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:ilocloc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...columns进行切片操作 # 读取第2、3行,第3、4 data1 = data.iloc[1:3, 2:4] 结果: 注意: 这里区间是左闭右开,data.iloc[1:...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

8.9K21

用过Excel,就会获取pandas数据框架值、行

标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取保存文件)数据,现在,我们转向更深入部分。...在Excel,我们可以看到行、单元格,可以使用“=”号或在公式引用这些值。...在Python,数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...在pandas,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行交集。

19.1K60
  • pythonpandasDataFrame对行操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回是DataFrame...(0) #取data第一行 data.icol(0) #取data第一 ser.iget_value(0) #选取ser序列第一个 ser.iget_value(-1) #选取ser序列最后一个...6所在第4,有点拗口 Out[31]: d three 13 data.ix[data.a 5,2:4] #选择'a'中大于5所在第3-5(不包括5) Out[32]: c...github地址 到此这篇关于pythonpandasDataFrame对行操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    Pandas基础使用系列---获取行

    前言我们上篇文章简单介绍了如何获取行数据,今天我们一起来看看两个如何结合起来用。获取指定行指定数据我们依然使用之前数据。...我们先看看如何通过切片方法获取指定所有行数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行位置我们使用类似python切片语法。...大家还记得它们区别吗?可以看看上一篇文章内容。同样我们可以利用切片方法获取类似前4这样数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一也计算在内了。...通常是建议这样获取,因为从代码可读性上更容易知道我们获取是哪一行哪一。当然我们也可以通过索引切片方式获取,只是可读性上没有这么好。...df.iloc[[2,5], :4]如果不看结果,只从代码上看是很难知道我们获取是哪几列数据。结尾今天内容就是这些,下篇内容会大家介绍一些和我们这两篇内容相关一些小技巧或者说小练习敬请期待。

    60800

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...唯一区别是,在该方法,我们需要指定参数axis=1。下面是.drop()方法一些说明: 要删除单列:传入列名(字符串)。 删除多:传入要删除名称列表。...实际上我们没有删除,而是创建了一个新数据框架,其中只包含用户姓名、城市性别,有效地“删除”了其他两。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。

    7.2K20

    NumPyPandas广播

    Numpy广播 广播(Broadcast)是 numpy 对不同维度(shape)数组进行数值计算方式, 对数组算术运算通常在相应元素上进行。 “维度”指的是特征或数据。...例如,有一项研究测量水温度,另一项研究测量水盐度温度,第一个研究有一个维度;温度,而盐度温度研究是二维。维度只是每个观测不同属性,或者一些数据行。...Pandas广播 Pandas操作也与Numpy类似,但是这里我们特别说明3个函数,Apply、ApplymapAggregate,这三个函数经常用于按用户希望方式转换变量或整个数据。...,其中转换逻辑应用于数据每个数据点(也就是数据行每一)。...总结 在本文中,我们介绍了Numpy广播机制Pandas一些广播函数,并使用泰坦尼克数据集演示了pandas上常用转换/广播操作。

    1.2K20

    pandaslociloc_pandas loc函数

    目录 pandas索引使用 .loc 使用 .iloc使用 .ix使用 ---- pandas索引使用 定义一个pandasDataFrame对像 import pandas as pd....loc[],括号里面是先行后,以逗号分割,行分别是行标签标签,比如我要得到数字5,那么就就是: data.loc["b","B"] 因为行标签为b,标签为B,同理,那么4就是data...5,右下角值是9,那么这个矩形区域值就是这两个坐标之间,也就是对应5行标签到9行标签,5标签到9标签,行列标签之间用逗号隔开,行标签与行标签之间,标签与标签之间用冒号隔开,记住,.loc...那么,我们会想,那我们只知道要第几行,第几列数据呢,这该怎么办,刚好,.iloc就是干这个事 .iloc使用 .iloc[]与loc一样,括号里面也是先行后,行列标签用逗号分割,与loc不同之处是...,.iloc 是根据行数与数来索引,比如上面提到得到数字5,那么用iloc来表示就是data.iloc[1,1],因为5是第2行第2,注意索引从0开始,同理4就是data.iloc[0,1],

    1.2K10

    如何在 Pandas 创建一个空数据帧并向其附加行

    Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据帧有效实现。数据帧是一种二维数据结构。在数据帧,数据以表格形式在行对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧。...在本教程,我们将学习如何创建一个空数据帧,以及如何在 Pandas 向其追加行。... Pandas 库创建一个空数据帧以及如何向其追加行。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据帧进行操作的人来说非常有帮助。

    27330

    SQL行转列转行

    而在SQL面试,一道出镜频率很高题目就是行转列转行问题,可以说这也是一道经典SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典学生成绩表问题。...01 行转列:sum+if 在行转列,经典解决方案是条件聚合,即sum+if组合。...其基本思路是这样: 在长表数据组织结构,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表需要将其变成同一uid下仅对应一行 在长表,仅有一记录了课程成绩,但在宽表则每门课作为一记录成绩...,然后将该命名为course;第二个用反引号包裹起来课程名实际上是从宽表引用这一取值,然后将其命名为score。...这实际上对应一个知识点是:在SQL字符串引用用单引号(其实双引号也可以),而字段名称引用则是用反引号 上述用到了where条件过滤成绩为空值记录,这实际是由于在原表存在有空值情况,如不加以过滤则在本例中最终查询记录有

    7.1K30

    SQL 行转列转行

    行转列,转行是我们在开发过程中经常碰到问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 运算符PIVOT来实现。用传统方法,比较好理解。...但是PIVOT 、UNPIVOT提供语法比一系列复杂SELECT…CASE 语句中所指定语法更简单、更具可读性。下面我们通过几个简单例子来介绍一下转行、行转列问题。...实际,可能支付方式特别多,而且逻辑也复杂很多,可能涉及汇率、手续费等等(曾经做个这样一个),如果支付方式特别多,我们CASE WHEN 会弄出一大堆,确实比较恼火,而且新增一种支付方式,我们还得修改脚本如果把上面的脚本用动态...这个是因为:对升级到 SQL Server 2005 或更高版本数据库使用 PIVOT UNPIVOT 时,必须将数据库兼容级别设置为 90 或更高。...下面我们来看看转行,主要是通过UNION ALL ,MAX来实现。

    5.5K20
    领券