首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

40410

用过Excel,就会获取pandas数据框架中的值、行和列

在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

19.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    盘点使用Pandas解决问题:对比两列数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们的解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.3K30

    请教个问题,我想把数据中名字的重复值删掉,只保留年纪大的怎么整呢?

    一、前言 国庆期间在Python白银交流群【谢峰】问了一个Pandas处理的问题,提问截图如下: 代码如下: import pandas as pd data = [{'name': '小明', 'age...只保留年龄最大的那个 data = data.drop_duplicates('name', inplace=False) print(data) 二、实现过程 这里【甯同学】给了一个思路,先排个序,...': '小明', 'age': 20}, {'name': '小明', 'age': 38}] data = pd.DataFrame(data) # print(data) # 删除名字重复的,只保留年龄最大的那个...': 20}, {'name': '小明', 'age': 38}] data = pd.DataFrame(data) # print(data) # 删除名字重复的,只保留年龄最大的那个 data...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    9910

    请教个问题,我想把数据中名字的重复值删掉,只保留年纪大的怎么整呢?

    一、sort_values()函数用途 pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序...=‘last’) 参数说明 参数 说明 by 指定列名(axis=0或’index’)或索引值(axis=1或’columns’) axis 若axis=0或’index’,则按照指定列中数据大小排序;...若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0 ascending 是否按指定列的数组升序排列,默认为True,即升序排列 inplace 是否用排序后的数据集替换原来的数据...,默认为False,即不替换 na_position {‘first’,‘last’},设定缺失值的显示位置 三、例子 单条件根据排序删除重复值 import pandas as pd data =...只保留年龄最大的那个) a = data.sort_values('age', ascending=False).drop_duplicates('name') print(a) 多条件根据排序删除重复值

    1.7K10

    Pandas数据分析

    这种方式添加一列 数据连接 merge 数据库中可以依据共有数据把两个或者多个数据表组合起来,即join操作 DataFrame 也可以实现类似数据库的join操作,Pandas可以通过pd.join命令组合数据...key how = ’right‘ 对应SQL中的 right outer 保留右侧表中的所有key how = 'outer' 对应SQL中的 full outer 保留左右两侧侧表中的所有key...how = 'inner' 对应SQL中的 inner 只保留左右两侧都有的key genres_track= genres.merge(tracks[['TrackId','Name','GenreId...','Milliseconds']],on='GenreId',how='outer') concat: Pandas函数 可以垂直和水平地连接两个或多个pandas对象 只用索引对齐 默认是外连接(也可以设为内连接...) merge: DataFrame方法 只能水平连接两个DataFrame对象 对齐是靠被调用的DataFrame的列或行索引和另一个DataFrame的列或行索引 默认是内连接(也可以设为左连接、

    11910

    《Pandas Cookbook》第06章 索引对齐1. 检查索引2. 求笛卡尔积3. 索引爆炸4. 用不等索引填充数值5. 从不同的DataFrame追加列6. 高亮每列的最大值7. 用链式方法重现

    求笛卡尔积 # 创建两个有不同索引、但包含一些相同值的Series In[17]: s1 = pd.Series(index=list('aaab'), data=np.arange(4))...# 即便使用了fill_value=0,有些值也会是缺失值,这是因为一些行和列的组合根本不存在输入的数据中 In[47]: df_14.add(df_15, fill_value=0).head(10...# random_salary中是有重复索引的,employee DataFrame的标签要对应random_salary中的多个标签 In[57]: employee['RANDOM_SALARY'...# 有的列只含有两个值,用nunique()方法挑出这些列 In[68]: criteria = college_n.nunique() == 2 criteria.head() Out...找到最常见的最大值 # 读取college,过滤出只包含本科生种族比例信息的列 In[90]: pd.options.display.max_rows= 40 In[91]: college = pd.read_csv

    3K10

    numpy和pandas库实战——批量得到文件夹下多个CSV文件中的第一列数据并求其最值

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值,大家讨论的甚为激烈,在此总结了两个方法,希望后面有遇到该问题的小伙伴可以少走弯路...通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨

    9.5K20

    Pandas图鉴(三):DataFrames

    DataFrame有两种可供选择的索引模式:loc用于通过标签进行索引,iloc用于通过位置索引进行索引。 在Pandas中,引用多行/列是一种复制,而不是一种视图。...为了使其发挥作用,这两个DataFrame需要有(大致)相同的列。这与NumPy中的vstack类似,你如下图所示: 在索引中出现重复的值是不好的,会遇到各种各样的问题。...文档中的 "保留键序" 声明只适用于left_index=True和/或right_index=True(其实就是join的别名),并且只在要合并的列中没有重复值的情况下适用。...,连接要求 "right" 列是有索引的; 合并丢弃左边DataFrame的索引,连接保留它; 默认情况下,merge执行的是内连接,join执行的是左外连接; 合并不保留行的顺序,连接保留它们(有一些限制...它将索引和列合并到MultiIndex中: eset_index 如果你想只stack某些列,你可以使用melt: 请注意,熔体以不同的方式排列结果的行。

    44420

    Pandas图鉴(二):Series 和 Index

    Pandas 给 NumPy 数组带来的两个关键特性是: 异质类型 —— 每一列都允许有自己的类型 索引 —— 提高指定列的查询速度 事实证明,这些功能足以使Pandas成为Excel和数据库的强大竞争者...你逐一进行了几次查询,每次都缩小了搜索范围,但只看了列的一个子集,因为同时看到所有的一百个字段是不现实的。现在你已经找到了目标行,想看到原始表中关于它们的所有信息。一个数字索引可以帮助你立即得到它。...在Pandas中,它被称为MultiIndex(第4部分),索引内的每一列都被称为level。 索引的另一个重要特性是它是不可改变的。与DataFrame中的普通列相比,你不能就地修改它。...索引有一个名字(在MultiIndex的情况下,每一层都有一个名字)。而这个名字在Pandas中没有被充分使用。...下面是插入数值的一种方式和删除数值的两种方式: 第二种删除值的方法(通过删除)比较慢,而且在索引中存在非唯一值的情况下可能会导致复杂的错误。

    33920

    数据导入与预处理-课程总结-04~06章

    header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...常用的合并数据的函数包括: 3.2.3 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。...它们的区别是: df.join() 相同行索引的数据被合并在一起,因此拼接后的行数不会增加(可能会减少)、列数增加; df.merge()通过指定的列索引进行合并,行列都有可能增加;merge也可以指定行索引进行合并...# 重塑df,使之具有两层行索引 # 原来的列数据one, two, three就到了行上来了,形成多层索引。

    13.1K10

    Pandas学习笔记02-数据合并

    第一章可前往查看:《Pandas学习笔记01-基础知识》 pandas对象中的数据可以通过一些方式进行合并: pandas.concat可以沿着一条轴将多个对象堆叠到一起; pandas.merge可根据一个或多个键将不同...纵向拼接通俗来讲就是按行合并,横向拼接通俗来讲就是按列合并; 外连接通俗来说就是取所有的表头字段或索引字段,内连接通俗来说就是只取各表都有的表头字段或索引字段。...默认情况下,join='outer',合并时索引全部保留,对于不存在值的部分会默认赋NaN。...按列合并 对于按照列合并数据时,如果我们希望只保留第一份数据下的索引,可以通过如下两种方式实现: #①合并后只取第一份数据的索引 In [14]: pd.concat([df1, df4], axis=...outer外连接 inner内连接 外连接只保留左右两侧均有的索引,这个也是默认的连接形式 In [37]: result = pd.merge(left, right, how='inner', on

    3.9K50

    Pandas 25 式

    第一步是只读取切实所需的列,这里需要指定 usecols 参数。 ? 只选择两列以后,DataFrame 对内存的占用减少到 13.7 KB。...两个 DataFrame 的行数之和与 movies 一致。 ? movies_1 与 movies_2 里的每个索引值都来自于 movies,而且互不重复。 ?...用 dropna() 删除列里的所有缺失值。 ? 只想删除列中缺失值高于 10% 的缺失值,可以设置 dropna() 里的阈值,即 threshold. ? 16....通过赋值语句,把这两列添加到原 DataFrame。 ? 如果想分割字符串,但只想保留分割结果的一列,该怎么操作? ? 要是只想保留城市列,可以选择只把城市加到 DataFrame 里。 ?...可以看到,这个表隐藏了索引,闭市价最小值用红色显示,最大值用浅绿色显示。 再看一下背景色渐变的样式。 ? 交易量(Volume)列现在按不同深浅的蓝色显示,一眼就能看出来数据的大小。

    8.4K00

    数据导入与预处理-第5章-数据清理

    重复值主要有两种处理方式:删除和保留,其中删除重复值是比较常见的方式,其目的在于保留唯一的数据记录。...总而言之,缺失值、重复值、异常值都有多种处理方式,具体选用哪种方式进行处理要依据具体的处理需求和样本数据特点。 2....缺失值的常见处理方式有三种:删除缺失值、填充缺失值和插补缺失值,pandas中为每种处理方式均提供了相应的方法。...how:表示删除缺失值的方式。 thresh:表示保留至少有N个非NaN值的行或列。 subset:表示删除指定列的缺失值。 inplace:表示是否操作原数据。...DataFrame.duplicated(subset=None, keep='first') subset:表示识别重复项的列索引或列索引序列,默认标识所有的列索引。

    4.5K20

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    第一步是只读取切实所需的列,这里需要指定 usecols 参数。 ? 只选择两列以后,DataFrame 对内存的占用减少到 13.7 KB。...两个 DataFrame 的行数之和与 movies 一致。 ? movies_1 与 movies_2 里的每个索引值都来自于 movies,而且互不重复。 ?...用 dropna() 删除列里的所有缺失值。 ? 只想删除列中缺失值高于 10% 的缺失值,可以设置 dropna() 里的阈值,即 threshold. ? 16....通过赋值语句,把这两列添加到原 DataFrame。 ? 如果想分割字符串,但只想保留分割结果的一列,该怎么操作? ? 要是只想保留城市列,可以选择只把城市加到 DataFrame 里。 ?...可以看到,这个表隐藏了索引,闭市价最小值用红色显示,最大值用浅绿色显示。 再看一下背景色渐变的样式。 ? 交易量(Volume)列现在按不同深浅的蓝色显示,一眼就能看出来数据的大小。

    7.2K20

    pandas | DataFrame基础运算以及空值填充

    也就是说对于对于只在一个DataFrame中缺失的位置会被替换成我们指定的值,如果在两个DataFrame都缺失,那么依然还会是Nan。 ?...我们发现使用了dropna之后,出现了空值的行都被抛弃了。只保留了没有空值的行,有时候我们希望抛弃是的列而不是行,这个时候我们可以通过传入axis参数进行控制。 ?...这样我们得到的就是不含空值的列,除了可以控制行列之外,我们还可以控制执行drop的严格程度。我们可以通过how这个参数来判断,how支持两种值传入,一种是'all',一种是'any'。...fillna这个函数不仅可以使用在DataFrame上,也可以使用在Series上,所以我们可以针对DataFrame中的某一列或者是某些列进行填充: ?...在实际的运用当中,我们一般很少会直接对两个DataFrame进行加减运算,但是DataFrame中出现空值是家常便饭的事情。因此对于空值的填充和处理非常重要,可以说是学习中的重点,大家千万注意。

    4K20

    Pandas知识点-连接操作concat

    在这两个例子中,按行连接时,两个DataFrame的列索引相同,按列连接时,两个DataFrame的行索引相同,所以结果看起来很直观。 3. 被连接数据的索引不同 ? 连接原理如下。 ?...这个例子中,两个DataFrame的行索引和列索引都不相等,将它们按行连接时,先将两个DataFrame的行拼接起来,然后在每行中没有数据的列填充空值。按列连接同理。...第二步,检索数据中的列索引,如果列索引相等,则结果兼容显示在同一列(例1),如果列索引不相等,则分别显示,无数据的位置填充空值(例3)。 三连接时取交集 ---- ?...按行连接时,列取被连接数据的交集,只保留被连接数据中都有的列,原理如下。按列连接同理。 ? 四按列连接时修改行索引 ---- ?...如果取的是交集,修改行索引的过程为:先按取交集的方式连接,然后在结果中增加比修改的索引少的行,增加回的行中填充空值。 五重设结果的索引 ---- ?

    2.6K50

    python数据科学系列:pandas入门详细教程

    仅支持数字索引,pandas的两种数据结构均支持标签索引,包括bool索引也是支持的 类比SQL的join和groupby功能,pandas可以很容易实现SQL这两个核心功能,实际上,SQL的绝大部分DQL...rename中是接收字典,允许只更改部分信息) rename_axis,重命名标签名,rename中也可实现相同功能 ?...切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...切片类型与索引列类型不一致时,引发报错 loc/iloc,最为常用的两种数据访问方法,其中loc按标签值访问、iloc按数字索引访问,均支持单值访问或切片查询。...检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates

    15.1K21
    领券