首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

将间隔小于60s的数据分到同一组

一、题目 有一份用户访问记录表,记录用户id和访问时间,如果用户访问时间间隔小于60s则认为时一次浏览。...样例数据 +----------+--------------+ | user_id | access_time | +----------+--------------+ | 1 |...,计算出时间差,考察的是开窗函数lag(); 2.对时间差进行判断,确认是否需要新建一个组; 3.然后使用sum()的开窗函数,累加小计,赋予组ID; 维度 评分 题目难度 ⭐️⭐️⭐️⭐️⭐️ 题目清晰度...聚合函数开窗使用order by 计算结果是从分组开始计算到当前行的结果,这里的技巧:需要新建组的时候就给标签赋值1,否则0,然后累加计算结果在新建组的时候值就会变化 with t_group as (...is_new_group)over(partition by user_id order by access_time asc) as group_id from t_group 查询结果 四、建表语句和数据插入

20810

Pandas的数据结构Pandas的数据结构

Pandas的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的...对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。...类似一维数组的对象 由数据和索引组成 索引(index)在左,数据(values)在右 索引是自动创建的 [图片上传失败...(image-3ff688-1523173952026)] 1....DataFrame既有行索引也有列索引,它可以被看做是由Series组成的字典(共用同一个索引),数据是以二维结构存放的。...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 [图片上传失败...

88520
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...0 语文 1 数学 3 数学 6 语文 7 语文 dtype: category Categories (2, object): ['数学', '语文'] 创建虚拟变量 将分类数据转成虚拟变量...category Categories (4, object): ['col1', 'col2', 'col3', 'col4'] pd.get\_dummies(data4) # get\_dummies:将一维的分类数据转换成一个包含虚拟变量的

    8.6K20

    Pandas中的数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...ljust() 相当于str.ljust rjust() 相当于str.rjust zfill() 等同于str.zfill wrap() 将长长的字符串拆分为长度小于给定宽度的行 slice() 切分...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510

    图解Pandas的数据分类

    图解Pandas中的数据分类 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用。...背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as pd data =...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2["subject...0 语文 1 数学 3 数学 6 语文 7 语文 dtype: category Categories (2, object): ['数学', '语文'] 创建虚拟变量 将分类数据转成虚拟变量...category Categories (4, object): ['col1', 'col2', 'col3', 'col4'] pd.get_dummies(data4) # get_dummies:将一维的分类数据转换成一个包含虚拟变量的

    22720

    什么是大数据,大数据的处理流程,主要分为哪几步?

    这句话至少传递两种信息: 1、大数据是海量的数据 2、大数据处理无捷径,对分析处理技术提出了更高的要求 二、大数据的处理流程 下图是数据处理流程: 1、底层是数以千亿计的数据源,数据源可以是SCM...(供应链数据),4PL(物流数据),CRM(客户数据),网站日志以及其他的数据 2、第二层是数据加工层,数据工程师对数据源按照标准的统计口径和指标对数据进行抽取、清洗、转化、装载(整个过程简称ELT)...数据集市,指分类存储数据的集合,即按照不同部门或用户的需求存储数据。...4、第四层是BI(商业智能),按照业务需求,对数据进行分析建模、挖掘、运算,输出统一的数据分析平台 5、第五层是数据访问层,对不同的需求方开放不同的数据角色和权限,以数据驱动业务。...大数据的量级,决定了大数据处理及应用的难度,需要利用特定的技术工具去处理大数据。

    1.2K40

    市面上主流的数据库的类型分为哪些

    市面上主流数据库主要可以分为以下几种类型: 关系型数据库(RDBMS): MySQL: 开源关系型数据库管理系统,广泛应用于Web应用开发。...NoSQL数据库: MongoDB: 非关系型数据库,采用BSON格式存储数据,适用于大量文档型数据的存储。 Cassandra: 高度可扩展的分布式NoSQL数据库,适用于处理大规模数据。...Redis: 内存中的数据结构存储系统,用作缓存、消息中间件等。 Couchbase: 面向文档的NoSQL数据库,结合了缓存和数据库的功能。...Amazon DynamoDB: 亚马逊提供的托管的NoSQL数据库服务。 时序数据库: InfluxDB: 高性能时序数据库,适用于存储和查询时间序列数据,如监控数据。...Google Bigtable: 高性能、高可扩展性的列式数据库,用于大规模数据存储。 图数据库: Neo4j: 开源图数据库,用于存储和查询图形结构的数据。

    30810

    Pandas的datetime数据类型

    t2 = datetime(2023,4,21) now-t2 # datetime.timedelta(days=251, seconds=31427, microseconds=546921) 将pandas...中的数据转换成datetime 1.to_datetime函数 Timestamp是pandas用来替换python datetime.datetime的 可以使用to_datetime函数把数据转换成...这一列数据可以通过日期运算重建该列 疫情爆发的第一天(数据集中最早的一天)是2014-03-22。...=False) 查看发生在某个时刻的犯罪记录 crime.at_time('5:47’) 在按时间段选取数据时,可以将时间索引排序,排序之后再选取效率更高 crime_sort = crime.sort_index...,可用于计时特定代码段) 总结: Pandas中,datetime64用来表示时间序列类型 时间序列类型的数据可以作为行索引,对应的数据类型是DatetimeIndex类型 datetime64类型可以做差

    15010

    数据科学篇| Pandas库的使用

    在数据分析工作中,Pandas 的使用频率是很高的,一方面是因为 Pandas 提供的基础数据结构 DataFrame 与 json 的契合度很高,转换起来就很方便。...另一方面,如果我们日常的数据清理工作不是很复杂的话,你通常用几句 Pandas 代码就可以对数据进行规整。 Pandas 可以说是基于 NumPy 构建的含有更高级数据结构和分析能力的工具包。...数据清洗 数据清洗是数据准备过程中必不可少的环节,Pandas 也为我们提供了数据清洗的工具,在后面数据清洗的章节中会给你做详细的介绍,这里简单介绍下 Pandas 在数据清洗中的使用方法。...比如定义 double_df 函数是将原来的数值 *2 进行返回。...如何用 SQL 方式打开 Pandas Pandas 的 DataFrame 数据类型可以让我们像处理数据表一样进行操作,比如数据表的增删改查,都可以用 Pandas 工具来完成。

    6.7K20

    pandas数据读取的问题记录

    最近发现pandas的一个问题,记录一下: 有一组数据(test.txt)如下: 20181016 14830680298903273 20181016 14839603473953069...14839603473953079 20181016 14839603473953089 20181016 14839603473953099 20181016 14839603473953019 剖析出来看,数据是按照...(line) 我平时一直在用pandas去读数据,所以我很熟练的写下来如下的代码: pd.read_table('test.txt',header=None) 然后发现,第一列变成了科学记数法的方式进行存储了...,理论上讲14830680298903273没有小数部分不存在四舍五入的原因,网上搜了也没有很明确的解释,初步讨论后猜测应该是pandas在用float64去存这种长度过长的数字的时候有精度丢失的问题。...) 在生产数据的时候,对于这种过长的数据采取str的形式去存 也是给自己提个醒,要规范一下自己的数据存储操作,并养成数据核对的习惯。

    1.3K20
    领券