首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 查找,丢弃值唯一

前言 数据清洗很重要,本文演示如何使用 Python Pandas查找和丢弃 DataFrame 中值唯一,简言之,就是某数值除空值外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把缺失值先丢弃,再统计该唯一值个数即可。...代码实现 数据读入 检测值唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...值唯一 ” --> “ 除了空值以外唯一值个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

5.7K21

Pandas中如何查找中最大值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

34610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Pandas返回每个个体记录中属性为1标签集合

    一、前言 前几天在J哥Python群【Z】问了一个Pandas数据处理问题,一起来看看吧。 各位群友,打扰了。能否咨询个pandas处理问题?...左边一id代表个体/记录,右边是这些个体/记录属性布尔值。我想做个处理,返回每个个体/记录中属性为1标签集合。...后来他粉丝自己朋友也提供了一个更好方法,如下所示: 方法还是很多,不过还得是apply最为Pythonic! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...站不住就准备加仓,这个pandas语句该咋写?

    14030

    25个例子学会Pandas Groupby 操作(附代码)

    5、多个聚合和多个函数 sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"]) 6、对不同聚合进行命名 sales.groupby...= ("price", "mean") ) 8、用于分组 就像我们可以聚合多个一样,我们也可以使用多个进行分组。...10、最大Top N max函数返回每个组最大值。...由于行是根据上个月销售值排序,所以我们将获得上个月销售额排名第五行。 13、第n个值,倒排序 也可以用负第n项。例如," nth(-2) "返回末尾开始第二行。...如果用于分组中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。 让我们首先添加一个缺少存储值行。

    3.1K20

    总结了25个Pandas Groupby 经典案例!!

    大家好,我是俊欣~ groupbyPandas在数据分析中最常用函数之一。它用于根据给定不同值对数据点(即行)进行分组,分组后数据可以计算生成组聚合值。...5、多个聚合和多个函数 sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"]) output 6、对不同聚合进行命名...= ("price", "mean") ) output 8、用于分组 就像我们可以聚合多个一样,我们也可以使用多个进行分组。...10、最大Top N max函数返回每个组最大值。...由于行是根据上个月销售值排序,所以我们将获得上个月销售额排名第五行。 13、第n个值,倒排序 也可以用负第n项。例如,nth(-2)返回末尾开始第二行。

    3.4K30

    Pandas速查卡-Python数据科学

    ) 所有唯一值和计数 选择 df[col] 返回一维数组col df[[col1, col2]] 作为数据框返回 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...(col) 从一返回一组对象值 df.groupby([col1,col2]) 返回一组对象值 df.groupby(col1)[col2] 返回col2中平均值,按col1中值分组...col2和col3平均值 df.groupby(col1).agg(np.mean) 查找每个唯一col1组所有平均值 data.apply(np.mean) 在每个列上应用函数 data.apply...df.describe() 数值汇总统计信息 df.mean() 返回所有平均值 df.corr() 查找数据框中之间相关性 df.count() 计算每个数据框非空值数量 df.max...() 查找每个最大值 df.min() 查找最小值 df.median() 查找中值 df.std() 查找每个标准差 点击“阅读原文”下载此速查卡打印版本 END.

    9.2K80

    25个例子学会Pandas Groupby 操作

    groupbyPandas在数据分析中最常用函数之一。它用于根据给定不同值对数据点(即行)进行分组,分组后数据可以计算生成组聚合值。...5、多个聚合和多个函数 sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"]) 6、对不同聚合进行命名 sales.groupby...= ("price", "mean") ) 8、用于分组 就像我们可以聚合多个一样,我们也可以使用多个进行分组。...10、最大Top N max函数返回每个组最大值。...由于行是根据上个月销售值排序,所以我们将获得上个月销售额排名第五行。 13、第n个值,倒排序 也可以用负第n项。例如," nth(-2) "返回末尾开始第二行。

    2.5K20

    快速介绍Python数据分析库pandas基础知识和代码示例

    我们也可以添加 # Adding a new column to existing DataFrame in Pandas sex = ['Male','Female','Male','Female...通常回根据一个或多个值对panda DataFrame进行排序,或者根据panda DataFrame行索引值或行名称进行排序。 例如,我们希望按学生名字按升序排序。...使用max()查找每一行和每最大值 # Get a series containing maximum value of each row max_row = df.max(axis=1) ?...类似地,我们可以使用df.min()来查找每一行或每最小值。 其他有用统计功能: sum():返回所请求总和。默认情况下,axis是索引(axis=0)。...mean():返回平均值 median():返回中位数 std():返回数值标准偏差。 corr():返回数据格式中之间相关性。 count():返回中非空值数量。

    8.1K20

    Pandas中实现ExcelSUMIF和COUNTIF函数功能

    顾名思义,该函数对满足特定条件数字相加。 示例数据集 本文使用Kaggle找到一个有趣数据集。...pandasSUMIF 使用布尔索引 要查找Manhattan区电话总数。布尔索引是pandas中非常常见技术。本质上,它对数据框架应用筛选,只选择符合条件记录。...可以使用上面的方法循环五个行政区名称,然后逐个计算,但这有点低效。 使用groupby()方法 pandas库有一个groupby()方法,允许对组进行简单操作(例如求和)。...在示例中: 组: Borough 数据:num_calls 操作:sum() df.groupby('Borough')['num_calls'].sum() 图5:pandas groupby...PandasSUMIFS SUMIFS是另一个在Excel中经常使用函数,允许在执行求和计算时使用多个条件。 这一次,将通过组合Borough和Location来精确定位搜索。

    9.2K30

    数据处理技巧 | 带你了解Pandas.groupby() 常用数据处理方法

    今天我们继续推出一篇数据处理常用操作技能汇总:灵活使用pandas.groupby()函数,实现数据高效率处理,主要内容如下: pandas.groupby()三大主要操作介绍 pandas.groupby...相信很多小伙伴都使用过,今天我们就详细介绍下其常用分组(groupby)功能。大多数Pandas.GroupBy() 操作主要涉及以下三个操作,该三个操作也是pandas....# 返回是一个DataFrameGroupBy...object,当然,我们也可以两个或两个以上变量进行分组操作: grouped2 = test_dataest.groupby(["Team","Year"]) grouped2 返回同样是分组对象...同时计算多个结果 可能还有小伙伴问“能不能将聚合计算之后结果进行重命名呢?”,该操作在实际工作中经常应用到,如:根据某进行统计,并将结果重新命名。

    3.8K11

    (数据科学学习手札69)详解pandasmap、apply、applymap、groupby、agg

    *本篇开始所有文章数据和代码都已上传至我github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一、简介   pandas提供了很多方便简洁方法...genderF、M转换为女性、男性,可以有以下几种实现方式: ● 字典映射   这里我们编写F、M与女性、男性之间一一映射字典,再利用map()方法来得到映射: #定义F->女性,M->男性映射字典...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要分组后子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...直接调用聚合函数   譬如这里我们提取count后直接调用max()方法: #求每个分组中最高频次 data.groupby(by=['year','gender'])['count'].max()...可以注意到虽然我们使用reset_index()将索引还原回变量,但聚合结果列名变成红色框中奇怪样子,而在pandas 0.25.0以及之后版本中,可以使用pd.NamedAgg()来为聚合后每一赋予名字

    5K60

    Pandas 秘籍:6~11

    apply方法能够同时对多个进行操作时返回单个对象能力,使得此秘籍中计算成为可能。 准备 在此秘籍中,我们大学数据集中计算每个州数学和口头 SAT 分数加权平均值。...) KeyError: 'UGDS' apply一个不错功能是您可以通过返回一个序列来创建多个。...我们构建了一个函数,该函数计算两个 SAT 加权平均值和算术平均值以及每个组行数。 为了使apply创建多个,您必须返回一个序列。 索引值用作结果数据帧中列名。...除了查找算术和加权均值之外,我们还查找两个 SAT 几何和谐波均值,然后将结果作为数据帧返回,其中数据行是均值类型名称,是 SAT 类型。...由于两个数据帧索引相同,因此可以像第 7 步中那样将一个数据帧值分配给另一。 更多 步骤 2 开始,完成此秘籍另一种方法是直接sex_age中分配,而无需使用split方法。

    34K10

    数据导入与预处理-第6章-02数据变换

    基于值重塑数据(生成一个“透视”表)。使用来自指定索引/唯一值来形成结果DataFrame轴。此函数不支持数据聚合,多个值将导致MultiIndex。...使用pandasgroupby()方法拆分数据后会返回一个GroupBy对象,该对象是一个可迭代对象,它里面包含了每个分组具体信息,但无法直接被显示。...,又接收自定义函数,甚至可以同时运用多个方法或函数,或给各分配不同方法或函数,能够对分组应用灵活聚合操作。...'] = df_obj[['a','f']].groupby(by=['f']).transform('max') df_obj 输出为: 如果不提前选取,会生成同等结果返回结果: del...实现哑变量方法: pandas中使用get_dummies()函数对类别数据进行哑变量处理,并在处理后返回一个哑变量矩阵。

    19.3K20

    不再纠结,一文详解pandasmap、apply、applymap、groupby、agg...

    譬如这里我们想要得到genderF、M转换为女性、男性,可以有以下几种实现方式: 字典映射 这里我们编写F、M与女性、男性之间一一映射字典,再利用map()方法来得到映射: #定义F->女性...输出多数据 有些时候我们利用apply()会遇到希望同时输出多数据情况,在apply()中同时输出多时实际上返回是一个Series,这个Series中每个元素是与apply()中传入函数返回值顺序对应元组...可以看到,这里返回是单列结果,每个元素是返回值组成元组,这时若想直接得到各分开结果,需要用到zip(*zipped)来解开元组序列,从而得到分离返回值: a, b = zip(*data.apply...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要分组后子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...可以注意到虽然我们使用reset_index()将索引还原回变量,但聚合结果列名变成红色框中奇怪样子,而在pandas 0.25.0以及之后版本中,可以使用pd.NamedAgg()来为聚合后每一赋予名字

    5K10

    Python常用小技巧总结

    =[True,False]) # 先按col1升序排列,后按col2降序排列数据 df.groupby(col) # 返回⼀个按col进⾏分组Groupby对象 df.groupby([col1...,col2]) # 返回⼀个按多进⾏分组Groupby对象 df.groupby(col1)[col2].agg(mean) # 返回col1进⾏分组后,col2均值,agg可以接受列表参数...创建⼀个按col1进⾏分组,计算col2最⼤值和col3最⼤值、最⼩值数据透视表 df.groupby(col1).agg(np.mean) # 返回col1分组所有均值,⽀持...df.groupby(col1).col2.agg(['min','max']) data.apply(np.mean) # 对DataFrame中每⼀应⽤函数np.mean data.apply...(np.max,axis=1) # 对DataFrame中每⼀⾏应⽤函数np.max df.groupby(col1).col2.transform("sum") # 通常与groupby连⽤,避免索引更改

    9.4K20

    不再纠结,一文详解pandasmap、apply、applymap、groupby、agg...

    譬如这里我们想要得到genderF、M转换为女性、男性,可以有以下几种实现方式: 字典映射 这里我们编写F、M与女性、男性之间一一映射字典,再利用map()方法来得到映射: #定义F->女性...有些时候我们利用apply()会遇到希望同时输出多数据情况,在apply()中同时输出多时实际上返回是一个Series,这个Series中每个元素是与apply()中传入函数返回值顺序对应元组...) 可以看到,这里返回是单列结果,每个元素是返回值组成元组,这时若想直接得到各分开结果,需要用到zip(*zipped)来解开元组序列,从而得到分离返回值: a, b = zip(*data.apply...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要分组后子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...()来为聚合后每一赋予名字: data.groupby(['year','gender']).agg( min_count=pd.NamedAgg(column='count', aggfunc

    5.3K30

    30 个小例子帮你快速掌握Pandas

    读取数据集 本次演示使用Kaggle上提供客户流失数据集[1]。 让我们将csv文件读取到pandas DataFrame开始。...我们删除了4,因此列数14减少到10。 2.读取时选择特定 我们只打算读取csv文件中某些。读取时,列表将传递给usecols参数。如果您事先知道列名,则比以后删除更好。...12.groupby函数 Pandas Groupby函数是一种通用且易于使用函数,有助于获得数据概览。它使探索数据集和揭示变量之间潜在关系变得更加容易。 我们将为groupby函数写几个例子。...13.通过groupby应用多个聚合函数 agg函数允许在组上应用多个聚合函数。函数列表作为参数传递。 df[['Geography','Gender','Exited']]....您可能需要更改其他一些选项是: max_colwidth:中显示最大字符数 max_columns:要显示最大max_rows:要显示最大行数 28.计算百分比变化 pct_change

    10.7K10
    领券