首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas-堆叠条形图,具有独立/不相关的条形图分区

Pandas-堆叠条形图是一种数据可视化的图表类型,用于展示不相关的条形图分区。堆叠条形图可以将多个数据系列以堆叠的方式显示在同一个条形图上,以便比较不同类别的数据之间的关系和趋势。

具体而言,堆叠条形图将不相关的条形图分区堆叠在一起,每个分区代表一个数据系列。每个分区的高度表示该数据系列在该类别上的数值大小,而整个堆叠条形图的高度则表示所有数据系列在该类别上的总和。

堆叠条形图的优势在于能够直观地比较不同类别的数据之间的差异,并展示每个数据系列在整体中的占比情况。它常用于展示多个类别的数据在不同维度上的分布情况,例如不同地区的销售额、不同产品的市场份额等。

在腾讯云的数据可视化产品中,可以使用腾讯云图表(Tencent Cloud Charts)来绘制堆叠条形图。腾讯云图表是一款基于Web的数据可视化工具,提供了丰富的图表类型和定制化选项,可以轻松创建各种类型的图表,包括堆叠条形图。

腾讯云图表的产品介绍和使用方法可以参考以下链接:

通过使用腾讯云图表,您可以方便地创建堆叠条形图,并根据需要进行自定义配置,以满足您的数据可视化需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

《数据可视化基础》第九章:比例可视化(二)

一个堆叠条形图可视化例子 在上面说到堆叠条形图时候,我们说到,由于内部比例相对变化问题。所以不建议用堆叠条形图来可视化时间序列数据。但是如果只有两个分组的话,那么就可以使用堆叠条形图了。...例如在观察一个地方一段时间男女比例构成时候,我们就可以使用堆叠条形图。 ? 对于一个连续性多分组比例数据,如果使用堆叠条形图的话,会是很多并排条形,可视化效果不好。...这个时候我们就可以使用堆叠密度图来进行可视化。 例如我们在可视化健康状态和年龄时候,其中年龄可以当作连续性变量,如下图所有,利用堆叠密度图可视化效果还是不错。...但是,同样对于这个图对于都是相对变化,所以之间绝对变化很难观察出来。 4....将比例分别可视化为总体一部分 并排条形图问题是,它们无法清晰地看到各个亚组相对于整体变化,而堆叠条形图问题在于,由于它们具有不同基线,因此无法轻松比较不同条形图

1.1K30
  • 60种常用可视化图表使用场景——(上)

    13、堆叠条形图 跟多组条形图不同,堆叠条形图 (Stacked Bar Graph) 将多个数据集条形彼此重迭显示,适合用来显示大型类别如何细分为较小类别,以及每部分与总量有什么关系。...堆叠条形图共分成两种: 简单堆叠条形图。将分段数值一个接一个地放置,条形总值就是所有段值加在一起,适合用来比较每个分组/分段总量。 100% 堆叠条形图。...14、不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间关系,原理类似双向 100% 堆叠条形图,但其中所有条形在数值/标尺轴上具有相等长度...推荐制作工具有:D3、Datamatic、Datavisual、Infogr.am 17、堆叠式面积图 堆叠式面积图 (Stacked Area Graph) 原理与简单面积图相同,但它能同时显示多个数据系列...推荐制作工具有:Arpit Narechania's Block。 30、径向条形图 径向条形图是在极坐标系上绘制条形图。 虽然看起来很美观,但径向条形图上条形长度可能会被人误解。

    22410

    这些条形图用法您都知道吗?

    前提是绘图数据已做了统计汇总); position:用于设置条形图摆放位置,默认为'stack',表示绘制堆叠条形图;如果指定为'dodge',表示绘制水平交错条形图;如果为'fill',表示绘制百分比堆叠条形图...如果绘图数据涉及是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...然而,在实际企业环境中,这样图形出现频次并不是很高,因为绝对数量堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍百分比堆叠条形图。...双离散单数值百分比堆叠条形图 # 明细数据--双离散单数值变量百分比堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill...堆叠条形图也有弊端,那就是只能够解决可叠加问题可视化,假设数值型指标不能够叠加(如平均薪资、渗透率等指标是不能相加),就不可以使用该类图形,但不妨可以试试水平交错条形图

    5.5K10

    《数据可视化基础》第九章:比例可视化(一)

    饼形图将一个圆圈分成多个切片,以使每个切片面积与其所占总数比例成比例。同样,我们可以在矩形上执行相同步骤,结果是堆积条形图。...我们可以根据矩形是垂直还是水平分为,垂直堆叠条形图或水平堆叠条形图。 ? 进一步,我们还可以将?条形图每一个小部分并排放置,而不是将它们堆叠在一起。...但是,在并排条形图中,每个条形与总数关系在视觉上并不明显。 ? 对于以上三种可视化比例图形而言。基本上可以用下面的表格来说明其主要适用标准。 ? 2....一个并排条形图例子 我们在上面提到过说,对于并排条形图在进行不同比例之间变化比较时以及时间序列比较时是具有优势。这里我们就用一个例子来说明这样可视化好处。...而且由于条形跨年相对变化关系,很难比较B,C和D公司跨年市场份额, ? 对于此假设数据集,并排条形图是最佳选择。

    1.4K31

    可视化图表样式使用大全

    堆叠条形图 ? 跟多组条形图不同,堆叠条形图 (Stacked Bar Graph) 将多个数据集条形彼此重迭显示,适合用来显示大型类别如何细分为较小类别,以及每部分与总量有什么关系。...堆叠条形图共分成两种: 简单堆叠条形图。将分段数值一个接一个地放置,条形总值就是所有段值加在一起,适合用来比较每个分组/分段总量。 100% 堆叠条形图。...不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间关系,原理类似双向 100% 堆叠条形图,但其中所有条形在数值/标尺轴上具有相等长度,并会被划分成段...推荐制作工具有:D3、Datamatic、Datavisual、Infogr.am 堆叠式面积图 ?...此外,条形也可以如堆叠条形图堆叠起来。 推荐制作工具有:jChartFX、Bokeh。 热图 ?

    9.4K10

    常用60类图表使用场景、制作工具推荐!

    堆叠条形图 跟多组条形图不同,堆叠条形图 (Stacked Bar Graph) 将多个数据集条形彼此重迭显示,适合用来显示大型类别如何细分为较小类别,以及每部分与总量有什么关系。...堆叠条形图共分成两种: 简单堆叠条形图。将分段数值一个接一个地放置,条形总值就是所有段值加在一起,适合用来比较每个分组/分段总量。 100% 堆叠条形图。...不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间关系,原理类似双向 100% 堆叠条形图,但其中所有条形在数值/标尺轴上具有相等长度...推荐制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制条形图。 虽然看起来很美观,但径向条形图上条形长度可能会被人误解。...此外,条形也可以如堆叠条形图堆叠起来。 推荐制作工具有:jChartFX、Bokeh。

    8.8K20

    为什么你觉得Matplotlib用起来很困难?因为你还没看过这个思维导图

    使用条形图(而不是散点图)可以让我们清楚地看到每个箱子频率之间相对差异。...有人可能会认为,你必须制作两个独立直方图,把它们放在一起比较。但是,实际上有一个更好方法:我们可以用不同透明度覆盖直方图。看看下面的图。均匀分布透明度设为0。5这样我们就能看到它背后。...条形图 当您试图将类别很少(可能少于10个)分类数据可视化时,条形图是最有效。如果我们有太多类别,那么图中条形图就会非常混乱,很难理解。...它们非常适合分类数据,因为您可以根据条形图大小;分类也很容易划分和颜色编码。我们将看到三种不同类型条形图:常规、分组堆叠: ?...堆叠图代码举例: for i in range(0, len(y_data_list)): bar(x_data + alteration[i], y_data_list[i], color

    1.4K32

    60 种常用可视化图表,该怎么用?

    堆叠条形图 跟多组条形图不同,堆叠条形图 (Stacked Bar Graph) 将多个数据集条形彼此重迭显示,适合用来显示大型类别如何细分为较小类别,以及每部分与总量有什么关系。...堆叠条形图共分成两种: 简单堆叠条形图。将分段数值一个接一个地放置,条形总值就是所有段值加在一起,适合用来比较每个分组/分段总量。 100% 堆叠条形图。...不等宽柱状图 不等宽柱状图 (Marimekko Chart)也称为「马赛克图」,用来显示分类数据中一对变量之间关系,原理类似双向 100% 堆叠条形图,但其中所有条形在数值/标尺轴上具有相等长度...推荐制作工具有:Arpit Narechania's Block。 径向条形图 径向条形图是在极坐标系上绘制条形图。 虽然看起来很美观,但径向条形图上条形长度可能会被人误解。...此外,条形也可以如堆叠条形图堆叠起来。 推荐制作工具有:jChartFX、Bokeh。

    8.7K10

    Google数据可视化团队:数据可视化指南(中文版)

    柱状图(条形图)和饼图 柱状图(条形图)和饼图都可用于显示比例,表示部分与总体对比。...· 柱状图(条形图)使用共同基线,通过条形长度表示数量 · 饼图使用圆圆弧或角度表示整体一部分 柱状图(条形图),折线图和堆叠面积图在显示随时间变化方面比饼图更有效地。...文字排版 文本可用于不同图表元素,包括: · 图表标题 · 数据标签 · 轴标签 · 图例 图表标题通常是具有最高层次结构文本,轴标签和图例具有最低级别的层次结构。 ?...---- 行为 图表具有交互模式,使用户可以控制图表数据。这些模式可以使用户专注于图表特定值或范围。...多个独立图表有时可以比一个复杂图表更好地表达故事。 仪表板设计 仪表板目的应在其布局,样式和交互模式中体现。无论是用来制作演示文稿还是深入研究数据,它设计应该适合它使用方式。

    5.1K31

    8 条数据可视化配色规则

    相邻颜色亮度变化对应于它们用于渲染数据值变化。 发散调色板 是由两个连续调色板(每个调色板具有不同色调)相互堆叠而成,中间有一个拐点。...在可视化具有两个不同方向变化数据时,这种调色板非常有用。...— 规则3 — 对不相关数据使用分类颜色 分类调色板来自不同色调但饱和度和强度相同颜色,可用于具有完全不同来源或不相关不相关数据点可视化。...例如,印度卫星数量完全独立于法国卫星数量。 — 规则5 — 改变图表类型通常可以减少对颜色需求 在前面的示例中,饼图可能不是最佳选择。...由此造成类别损失可能并不总是可以接受。 相反,绘制条形图时,我们可以使用单一颜色并保留所有15个数据类别。

    88230

    【MATLAB】进阶绘图 ( Bar 条形图 | bar 函数 | bar3 函数 | Bar 条形图样式 | 堆叠条形图 | 水平条形图 | barh 函数 )

    文章目录 一、Bar 条形图 1、bar 函数 2、矩阵数据表示 3、bar 函数代码示例 二、Bar 条形图样式 1、bar 函数样式 2、堆叠条形图示例 三、水平条形图 1、barh 函数 2...x 值是一个矩阵 : x = \begin{bmatrix} 1 & 2 & 5 & 4 & 8 \end{bmatrix} 代码表示例 : % 条形图数值列表 x = [1 , 2 , 5 , 4...代码示例 : % 数值列表 , 组成一个矩阵 y = [x; 1:5]; 3、bar 函数代码示例 bar 函数代码示例 : % 条形图数值列表 x = [1, 2, 5, 4, 8]; % 数值列表..., 条形图四种样式如下 : 2、堆叠条形图示例 % 条形图数值列表 x = [1, 2, 5, 4, 8]; % 数值列表 , 组成一个矩阵 y = [x; 1:5]; % 绘制第一张图像...barh 函数参考文档 : https://ww2.mathworks.cn/help/matlab/ref/barh.html 1、barh 函数 与 bar 用法类似 , 使用 barh 函数绘制条形图是水平条形图

    5.2K31

    Python中最常用 14 种数据可视化类型概念与代码

    分组条形图 当数据集具有需要在图形上可视化子组时,将使用分组条形图。...堆叠条形图用于显示数据集子组。...这是堆叠条形图类型,其中每个堆叠条形显示其离散值占总值百分比。...它显示为点集合。它们在水平轴上位置决定了一个变量值。垂直轴上位置决定了另一个变量值。当一个变量可以控制而另一个变量依赖于它时,可以使用散点图。当两个连续变量独立时也可以使用它。...散点图可以具有高或低负相关。 无相关性 如果在散点图上显示两组数据之间没有明显相关性,则认为它们不相关。 气泡图 气泡图显示数据三个属性。它们由 x 位置、y 位置和气泡大小表示。

    9.4K20

    数据可视化设计指南

    时间变化图包括: 1.折线图 2.条形图 3.堆叠条形图 4.K线图 5.面积图(折线图) 6.时间线 7.地平线图(折线图) 8.瀑布图 同类别分析 同类别分析是同一维度下不同类别的数据之间比较分析...占比图表包括: 1.堆叠条形图 2.饼图 3.甜甜圈图 4.堆积面积图 5.矩形树图 6.旭日图 相关性图表 相关性图表显示两个或多个变量之间相关性。...取而代之是,使用堆叠面积图来比较一个时间维度内多个数据类别(水平轴表示时间)。 ? 允许。 使用堆叠面积图表示多个数据,能够保持良好可读性。3个类别的数据堆叠显示 ? 禁止。...因图形具有丰富且独特属性,所以可以应用于呈现复杂定量数据(例如温度,价格或速度)和定性数据(例如类别,风味)。...此图表中条形图具有微妙圆角,以确保条形图顶部能够精确地表明其长度。 ? 禁止。 不要使用难以读取图表形状,例如顶部边缘不精确条形图

    6.1K31

    Pandas数据可视化

    单变量可视化, 包括条形图、折线图、直方图、饼图等 数据使用葡萄酒评论数据集,来自葡萄酒爱好者杂志,包含10个字段,150929行,每一行代表一款葡萄酒 加载数据 条形图是最简单最常用可视化图表 在下面的案例中... 也可以折算成比例, 计算加利福尼亚葡萄酒占总数百分比 : 条形图(柱状图)非常灵活: 高度可以代表任何东西,只要它是数字即可 每个条形可以代表任何东西,只要它是一个类别即可。...  直方图看起来很像条形图, 直方图是一种特殊条形图,它可以将数据分成均匀间隔,并用条形图显示每个间隔中有多少行, 直方图柱子宽度代表了分组间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀间隔区间...散点图最适合使用相对较小数据集以及具有大量唯一值变量。 有几种方法可以处理过度绘图。...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠堆叠图是将一个变量绘制在另一个变量顶部图表 接下来通过堆叠图来展示最常见五种葡萄酒  从结果中看出,最受欢迎葡萄酒是

    11910

    图表解析系列之柱状图

    将类别拆分称多个子类别,形成“堆叠柱状图”。再如将柱形图与折线图结合起来,共同绘制在一张图上,俗称“双轴图”,等等。...请注意:【条形图】在不同产品或是概念解析中存在差异,例如在维基百科中,条形图等同于柱状图,认为柱状图为条形图另一种称呼。而更多时候条形图我们可理解为专指横向柱状图。...图片 堆叠柱状图:由堆叠项将一个类别拆成多个子类别形成堆叠柱状图。 图片 双轴图(组合图) 双轴图指标分为左侧指标和右侧指标,对应坐标轴分别为坐标 Y 轴左轴(主轴)和右轴(副轴)。...注意纵轴底端(最右侧)是从 34 开始,而不是 0。这意味着条形图理论上应该向下延伸到页面的底部。...事实上,按图中画法,视觉增长达到了 460% [条形图高度是 35-34=1 和 39.6-34=5.6,所以(5.6-1)/1=460%〕。

    2.3K50

    谷歌Material Design可视化数据设计规范指南

    柱状图(条形图)和饼图 柱状图(条形图)和饼图都可用于显示比例,表示部分与总体对比。...· 柱状图(条形图)使用共同基线,通过条形长度表示数量 · 饼图使用圆圆弧或角度表示整体一部分 柱状图(条形图),折线图和堆叠面积图在显示随时间变化方面比饼图更有效地。...面积图 面积图有多种类型,包括堆叠面积图和层叠面积图: · 堆叠面积图显示多个时间序列(在同一时间段内)堆叠在一起 · 层叠面积图显示多个时间序列(在同一时间段内)重叠在一起 层叠面积图建议不要使用超过两个时间序列...文字排版 文本可用于不同图表元素,包括: · 图表标题 · 数据标签 · 轴标签 · 图例 图表标题通常是具有最高层次结构文本,轴标签和图例具有最低级别的层次结构。...多个独立图表有时可以比一个复杂图表更好地表达故事。 仪表板设计 仪表板目的应在其布局,样式和交互模式中体现。无论是用来制作演示文稿还是深入研究数据,它设计应该适合它使用方式。

    3.8K21

    《数据可视化基础》第四章:可视化图形推荐

    除了条形图之外,我们还可以使用点图来进行可视化。这个点图是把点放到数量相对应位置上来进行展示。 ? 如果对于有多组类别的计数。我们可以使用分组或者堆叠条形图来进行展示。...脊线图 (峰峦图, Ridgeline plots) 可以替代小提琴图,并且在可视化随时间变化分布时通常很有用。 ? 3 比例 我们使用饼图、并排条形图以及堆叠条形图来可视化比例。...由于条形图可以分成水平也垂直,所以也就分垂直和水平条形图了。饼图强调各个部分总和并且可以突出显示简单区分。但是每一部分之间比较的话,并排条形图可能更好一些。...堆叠条形图对于每一部分比较不是很容易区分,但是在比较多组比例时候很有用。 ? 如果要进行多组比较时候,这个时候饼图空间往往就不够了。这个时候如果分组比较少的话,分组条形图可以使用。...另外,堆叠条形图基本使用所有情况,如果是比例沿连续性变量进行变化时候,使用堆叠密度图是可以。 ?

    2.4K30

    教程 | 5种快速易用Python Matplotlib数据可视化方法

    ,有人可能会认为我们需要制作两个独立直方图,并将它们拼接在一起而进行比较。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形数量观察不同类别之间区别,不同类别可以轻易地分离以及用颜色分组。我们将介绍三种类型条形图:常规、分组和堆叠条形图。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应值,每一个分组不同类别将使用不同颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量分类构成。...在下面的堆叠条形图中,我们比较了工作日服务器负载。通过使用不同颜色方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天工作效率最高,和同一服务器在不同天数负载大小。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots

    2.4K60

    5 种快速易用 Python Matplotlib 数据可视化方法

    ,有人可能会认为我们需要制作两个独立直方图,并将它们拼接在一起而进行比较。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形数量观察不同类别之间区别,不同类别可以轻易地分离以及用颜色分组。我们将介绍三种类型条形图:常规、分组和堆叠条形图。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应值,每一个分组不同类别将使用不同颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量分类构成。...在下面的堆叠条形图中,我们比较了工作日服务器负载。通过使用不同颜色方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天工作效率最高,和同一服务器在不同天数负载大小。...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots

    2K40
    领券