首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在隔离环境中使用GPU加速的LocalAI进行文本嵌入

是否需要对大量数据进行语义搜索?或者你需要在隔离环境中本地运行?这篇文章将告诉你如何实现这些需求。Elasticsearch提供了多种方式为你的数据创建嵌入进行对称搜索。...作为替代方案,你可以使用ELSER和E5在本地计算嵌入。这些嵌入模型在CPU上运行,并针对速度和内存使用进行了优化。它们也适用于隔离系统,并且可以在云中使用。...它支持使用多个后端进行模型推理,包括用于嵌入的Sentence Transformers和用于文本生成的llama.cpp。LocalAI还支持GPU加速,因此你可以更快地计算嵌入。...这篇文章将向你展示如何使用LocalAI计算数据的嵌入。我们将一步步地指导你如何设置LocalAI,配置它来计算数据的嵌入,并运行它以生成嵌入。...如何设置LocalAI来计算数据的嵌入第一步:使用docker-compose设置LocalAI要开始使用LocalAI,你需要在你的机器上安装Docker和docker-compose。

12511

实例应用(二):使用Python和OpenCV进行多尺度模板匹配

在这篇博文中,我将详细介绍如何将模板匹配扩展为 多尺度,并处理模板和输入图像尺寸不一样的图像。...使用Python和OpenCV进行多尺度模板匹配 要开始本教程,首先要了解为什么使用cv2进行模板匹配的标准方法 。matchTemplate 不是很健壮。 看看下面的示例图片: ?...正如您将在本文后面看到的那样,使用 边缘 而不是 原始图像进行模板匹配,可以大大提高模板匹配的准确性。...图7:使用cv2.matchTemplate进行多尺度模板匹配 再一次,我们的多尺度方法能够在输入图像中成功找到模板!...概要 在这篇博客文章中,我们发现了如何通过扩展它一起工作的标准模板匹配更强大的 多尺度。

6.4K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Pytorch和BERT进行多标签文本分类

    必须使用Google帐户才能使用Google Colab帐户。 处理数据的方法 在传统的NLP机器学习问题中,我们倾向于清除不需要的文本,例如删除停用词,标点符号,删除符号和数字等。...为简便起见,我已展示了如何对单词计数列进行计数,其中单个标题中使用的总单词数将被计算在内。您可能还需要处理类似于TITLE的Abstract列,以及ABSTRACT和TITLE的组合。...创建检查点可以节省时间,以便从头开始进行重新训练。如果您对从最佳模型生成的输出感到满意,则不需要进一步的微调,则可以使用模型进行推断。...使用混淆矩阵和分类报告,以可视化我们的模型如何正确/不正确地预测每个单独的目标。...在没有进行超参数优化的情况下,我使用测试数据进行推理,并在private score中获得0.82分。 有一些事情可以做,以提高F1成绩。

    6.4K53

    如何利用深度学习写诗歌(使用Python进行文本生成)

    在web上有大量的例子可供开发人员使用机器学习来编写文本,呈现的效果有荒谬的也有令人叹为观止的。 由于自然语言处理(NLP)领域的重大进步,机器能够自己理解上下文和编造故事。 ?...在本文中,我们将使用python和文本生成的概念来构建一个机器学习模型,可以用莎士比亚的风格来写十四行诗。让我们来看看它! 本文的主要内容 1.什么是文本生成? 2.文本生成的不同步骤。...文本是由一个挨着一个的字符组成的,实际中是很难处理的。这是因为在处理文本时,可以训练一个模型来使用之前发生的序列来做出非常准确的预测,但是之前的一个错误的预测有可能使整个句子变得毫无意义。...文本文件被打开并保存在text中。然后将该内容转换为小写,以减少可能单词的数量(稍后将对此进行详细介绍)。 5 创建映射 映射是在文本中为字符/单词分配任意数字的步骤。...然后,我们将X_modified的值进行缩放,这样我们的神经网络就可以更快地训练,并且更少的机会被困在局部最小值中。

    2.7K70

    如何使用keras,python和深度学习进行多GPU训练

    TensorFlow还是有使用的可能性,但它可能需要大量的样板代码和调整才能是你的网络使用多个GPU进行训练。...在使用多GPU训练的时,我更喜欢用mxnet后端(或甚至直接是mxnet库)而不是keras,但这会引入更多配置进行处理。...我已经使用并测试了这个多GPU功能近一年,我非常高兴能将它视为官方keras发行版的一部分。 在今天文章的其他部分中,我将演示如何使用keras,python和深度学习训练图像分类的CNN。...keras多GPU训练结果 让我们检查一下辛勤的劳动成果。 首先,使用附带链接中的代码。然后,可以按照结果进行操作。...总结 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络。 使用多个GPU使我们能够获得准线性加速。

    2.9K30

    如何使用OpenAttack进行文本对抗攻击

    关于OpenAttack OpenAttack是一款专为文本对抗攻击设计的开源工具套件,该工具基于Python开发,可以处理文本对抗攻击的整个过程,包括预处理文本、访问目标用户模型、生成对抗示例和评估攻击模型等等...功能&使用 OpenAttack支持以下几种功能: 高可用性:OpenAttack提供了易于使用的API,可以支持文本对抗攻击的整个过程; 全面覆盖攻击模型类型:OpenAttack支持句子/单词/字符级扰动和梯度...,进行对抗训练以提高机器学习模型的鲁棒性; 工具模块 工具安装 我们可以使用pip安装,或者克隆该项目源码来安装OpenAttack。...以下代码段显示了如何使用基于遗传算法的攻击模型攻击SST数据集上的BERT: import OpenAttack as oa # choose a trained victim classification...:攻击自定义目标用户模型 下面的代码段显示了如何使用基于遗传算法的攻击模型攻击SST上的自定义情绪分析模型: import OpenAttack as oa import numpy as np from

    1.4K20

    使用TensorFlow 2.0的LSTM进行多类文本分类

    作者 | Susan Li 来源 | Medium 编辑 | 代码医生团队 关于NLP的许多创新都是如何将上下文添加到单词向量中。常用的方法之一是使用递归神经网络。...因此,通常不使用普通RNN,而使用长短期记忆。LSTM是一种RNN,可以解决此长期依赖问题。 在新闻文章示例的文件分类中,具有这种多对一的关系。输入是单词序列,输出是单个类或标签。...__version__) 像这样将超参数放在顶部,以便更轻松地进行更改和编辑。 当到达那里时,将解释每个超参数如何工作。...双向包装器与LSTM层一起使用,它通过LSTM层向前和向后传播输入,然后连接输出。这有助于LSTM学习长期依赖关系。然后将其拟合到密集的神经网络中进行分类。...1开头进行令牌化结果是,最后一个密集层需要输出标签0、1、2、3、4、5,尽管从未使用过0。

    4.3K50

    如何使用多模态知识图谱嵌入:整合图像与文本

    多模态知识图谱的概念多模态数据的定义多模态数据是指同时包含多种数据类型(如文本、图像、音频等)的信息。在知识图谱中,实体可能会有图像描述和文本描述,这些信息可以用来增强嵌入表示。...多模态知识图谱的构建多模态知识图谱的构建需要整合来自不同来源的信息。例如,可以通过图像识别技术提取图像特征,通过自然语言处理技术提取文本特征,然后将这些特征与知识图谱中的实体和关系进行关联。...构建步骤描述 数据收集 收集包含文本和图像的多模态数据。 特征提取 使用深度学习方法提取图像和文本特征。...多模态知识图谱嵌入的方法特征提取使用卷积神经网络(CNN)提取图像特征,使用预训练的语言模型(如BERT)提取文本特征。...(如Flickr30k)进行实验,数据集包含图像及其相关文本描述。

    60621

    如何使用keras,python和深度学习进行多GPU训练

    在使用多GPU训练的时,我更喜欢用mxnet后端(或甚至直接是mxnet库)而不是keras,但这会引入更多配置进行处理。...我已经使用并测试了这个多GPU功能近一年,我非常高兴能将它视为官方keras发行版的一部分。 在今天文章的其他部分中,我将演示如何使用keras,python和深度学习训练图像分类的CNN。...keras多GPU训练结果 让我们检查一下辛勤的劳动成果。 首先,使用附带链接中的代码。然后,可以按照结果进行操作。...总结 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络。 使用多个GPU使我们能够获得准线性加速。...使用Keras启用多GPU培训就像单个函数调用一样简单 - 我建议尽可能使用多GPU培训。

    3.3K20

    SQL反模式学习笔记17 全文搜索

    反模式:模式匹配 使用Like 或者正则表达式。   缺点:(1)无法使用索引,进行全表遍历,非常耗时,性能极低。      (2)有时候会返回医疗之外的结果。...正则表达式可能会为单词边界提供一个模式来解决单词的匹配问题。 如何识别反模式:当出现以下情况时,可能是反模式   1、如何在like表达式的2个通配符之间插入一个变量?   ...合理使用反模式:   1、性能总是最重要的,如果一些查询过程很少执行,就不必要花很多功夫去对它进行优化   2、使用模式匹配操作进行很复杂的查询是很困难的,但是如果你为了一些简单的需求设计这样的模式匹配...4、PostgreSQL的文本搜索:提供一个复杂大可大量配置的方式来将文本转换为可搜索的词汇集合,并且让这些文档能够进行 模式匹配搜索。   ...(1)定义一个KeyWords表来记录所有用户搜索的关键字,然后定义一个交叉表来建立多对多的关系。     (2)将每个关键字和匹配的内容添加到交叉表中。

    1.2K10

    【经验分享】如何使用keras进行多主机分布式训练

    tf.keras.Sequential API来构建和编译一个简单的卷积神经网络 Keras 模型,用我们的 MNIST 数据集进行训练。...为了便于说明,本教程展示了如何在 localhost 上设置一个带有2个工作器的TF_CONFIG。实际上,用户会在外部IP地址/端口上创建多个工作器,并在每个工作器上适当地设置TF_CONFIG。...MultiWorkerMirroredStrategy 是同步多工作器训练的推荐策略,将在本指南中进行演示。...分发策略的范围决定了如何创建变量以及在何处创建变量,对于 MultiWorkerMirroredStrategy 而言,创建的变量为 MirroredVariable ,并且将它们复制到每个工作器上。...在工作器退出或不稳定的情况下,将 Keras 与 tf.distribute.Strategy 一起使用会具有容错的优势。

    1.7K20

    如何识别“答非所问”?使用gensim进行文本相似度计算

    在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。...再比如知乎、贴吧等问答社区内问题下面有很多回复者,如何快速过滤掉与问题无关的回答或者垃圾广告?? 那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大。...使用gensim进行文本相似度计算 原理 1、文本相似度计算的需求始于搜索引擎。 搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户。...3、处理用户查询 第一步:对用户查询进行分词。 第二步:根据网页库(文档)的数据,计算用户查询中每个词的tf-idf 值。 4、相似度的计算 使用余弦相似度来计算用户查询和每个网页之间的夹角。...学习目标: 利用gensim包分析文档相似度 使用jieba进行中文分词 了解TF-IDF模型 注:为了简化问题,本文没有剔除停用词“stop-word”。实际应用中应该要剔除停用词。

    2K10

    如何在 Linux 中使用 Grep 和正则表达式进行文本搜索?

    在 Linux 系统中,Grep 是一个强大的文本搜索工具,它允许您通过正则表达式来匹配和搜索文本模式。正则表达式是一种强大的模式匹配语言,它可以帮助您在文本文件中快速定位和提取特定模式的内容。...本文将详细介绍如何在 Linux 中使用 Grep 和正则表达式进行文本搜索。图片什么是 Grep?Grep 是一个命令行工具,用于在文本文件中搜索匹配指定模式的行。...使用正则表达式进行高级搜索Grep 允许您在搜索模式中使用正则表达式,以进行更高级的文本搜索。...使用元字符进行高级搜索:您可以使用元字符和特殊字符来定义更复杂的模式。例如,要搜索包含数字的行,可以使用 \d 元字符:grep "\d" file这将匹配包含任何数字的行。...您学习了如何使用正则表达式来搜索特定模式的行,如何在多个文件中搜索,以及如何使用高级选项进行更精确的搜索。请记住,在使用 Grep 和正则表达式时,练习和实践非常重要。

    1.6K00

    如何在Linux中使用less命令进行搜索文本?

    less 命令非常适合在终端中查看文本文件的内容,而不会弄乱屏幕。如果您正在查看一个大文件,并想要在其中查找特定文本,那么可以使用less命令,本文我将教你如何使用。...您也可以使用空格键和 b 键上下移动页面,匹配的模式(如果有)会突出显示。如果未找到搜索模式,您应该会在底部看到“未找到模式(按 RETURN)”消息。图片 可以使用 ?...参数执行反向搜索并搜索与模式不匹配的行。仅显示匹配行如果不想按 n 或 N 来查看匹配模式,那么就只能通过使用& 参数而不是执行搜索来显示匹配的行/ 参数。...图片可以使用箭头键移动到行,如果您查看底部,您会注意到它显示了行号并且它们不是连续的,因为您只看到匹配的行。使用 less 命令开始搜索可以在使用 less 命令打开文件后立即开始搜索关键词。...在我看来,在查看文件时使用 less 进行搜索是可以的,但是,对于文件文本中的搜索,还是得依赖grep 命令。

    7.7K10

    Statistics In PostgreSQL

    为多列收集的统计信息 PostgreSQL 没有直接为索引收集统计信息,而是需要通过语句来为某几个列收集统计信息。...首先它会尝试使用 extended statistics (即多列统计信息)对谓词进行估算,然后对剩余的谓词使用单列统计信息进行估算,两个入口分别是 statext_clauselist_selectivity...在使用完两种多列统计信息后,便是使用剩余的单列统计信息在基于各列/谓词之间独立不相关假设进行的估算。...PostgreSQL 当前并没有为多列维护直方图。PostgreSQL 当前的做法将统计信息和索引进行了解耦这样就可以直接对并不是索引的列组合建立需要的统计信息,某种程度也方便统计信息的维护和管理。...其他的流程上,TiDB 和 PostgreSQL 大体上是相同的。 PG 如何使用统计信息对多表进行估算 这里我们主要介绍一下 PostgreSQL 如何对 inner join 进行估算。

    1.9K00

    使用 querySelector 查询元素时,如何使用正则进行模糊匹配查询?

    你好,今天聊一个简单的技术问题,使用 querySelector 方法查询网页上的元素时,如何使用正则进行模糊匹配查询?...*都是正则表达式中的特殊标识符,分别表示前匹配、后匹配和任意匹配。...这种情况便适合采用属性值正则匹配选择器: document.querySelector('h2[class^="UserInfoBox_textEllipsis"]'); 最后,回顾一下,使用属性值正则匹配选择器...,关键记忆点有两个: 1)使用了中括号,直接用在元素选择器后面。...在 JS 中,计算属性也是使用中括号,这种写法是一致的、合理的; 2)在中括号内,使用 k=v 形式书写,并且在 k 后面可以跟^、$、*三个正则符号,分别表示前匹配、后匹配和任意匹配。

    1.9K20

    PostgreSQL 教程

    您还将学习如何使用 psql 工具连接到 PostgreSQL,以及如何将示例数据库加载到 PostgreSQL 中进行练习。...自连接 通过将表与自身进行比较来将表与其自身连接。 完全外连接 使用完全连接查找一个表中在另一个表中没有匹配行的行。 交叉连接 生成两个或多个表中的行的笛卡尔积。...使用 SERIAL 自增列 使用 SERIAL 将自动增量列添加到表中。 序列 向您介绍序列并描述如何使用序列生成数字序列。 标识列 向您展示如何使用标识列。 更改表 修改现有表的结构。...添加列 向您展示如何向现有表添加一列或多列。 删除列 演示如何删除表的列。 更改列数据类型 向您展示如何更改列的数据。 重命名列 说明如何重命名表中的一列或多列。...PostgreSQL Java 教程 此 PostgreSQL JDBC 部分向您展示,如何使用 Java JDBC 驱动程序与 PostgreSQL 数据库进行交互。

    72810

    Ubuntu 16.04如何使用PostgreSQL中的全文搜索

    更具体地说,FTS检索文档,这些文档是包含文本数据的数据库实体,与搜索标准不完全匹配。...从技术上讲,像PostgreSQL这样的数据库管理系统(DBMS)通常允许使用LIKE子句进行部分文本查找。但是,这些请求往往在大型数据集上表现不佳。...它们也仅限于匹配确切的用户输入,这意味着即使存在包含相关信息的文档,查询也可能不会产生任何结果。 使用FTS,您可以构建更强大的文本搜索引擎,而无需在更高级的工具上引入额外的依赖关系。...在本教程中,我们将使用PostgreSQL存储包含假设新闻网站文章的数据,然后学习如何使用FTS查询数据库并仅选择最佳匹配。最后一步,我们将对全文搜索查询实施一些性能改进。...第二步 - 准备和搜索文档 这里的第一步是使用数据库表中的多个文本列构建一个文档。然后,我们可以将结果字符串转换为单词向量,这是我们将在查询中使用的。

    2.7K60
    领券