首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )

方法 不会修改原 RDD 数据 ; 使用方法 : new_rdd = old_rdd.filter(func) 上述代码中 , old_rdd 是 原始的 RDD 对象 , 调用 filter 方法...保留元素 ; 返回 False 删除元素 ; 3、代码示例 - RDD#filter 方法示例 下面代码中的核心代码是 : # 创建一个包含整数的 RDD rdd = sc.parallelize([...% 2 == 0 , 传入数字 , 如果是偶数返回 True , 保留元素 ; 如果是 奇数 返回 False , 删除元素 ; 代码示例 : """ PySpark 数据处理 """ # 导入 PySpark...创建一个包含整数的 RDD rdd = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 使用 filter 方法过滤出偶数, 删除奇数 even_numbers...RDD 对象 ; 2、代码示例 - RDD#distinct 方法示例 代码示例 : """ PySpark 数据处理 """ # 导入 PySpark 相关包 from pyspark import

48610

【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

二、Python 容器数据转 RDD 对象 1、RDD 转换 在 Python 中 , 使用 PySpark 库中的 SparkContext # parallelize 方法 , 可以将 Python...转换 RDD 对象相关 API 调用 SparkContext # parallelize 方法 可以将 Python 容器数据转为 RDD 对象 ; # 将数据转换为 RDD 对象 rdd = sparkContext.parallelize...执行环境 入口对象 sparkContext = SparkContext(conf=sparkConf) 再后 , 创建一个包含整数的简单列表 ; # 创建一个包含列表的数据 data = [1,...字符串 ; 调用 RDD # collect 方法 , 打印出来的 RDD 数据形式 : 列表 / 元组 / 集合 转换后的 RDD 数据打印出来都是列表 ; data1 = [1, 2, 3, 4,...相对路径 , 可以将 文本文件 中的数据 读取并转为 RDD 数据 ; 文本文件数据 : Tom 18 Jerry 12 代码示例 : """ PySpark 数据处理 """ # 导入 PySpark

49710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PySpark UD(A)F 的高效使用

    由于主要是在PySpark中处理DataFrames,所以可以在RDD属性的帮助下访问底层RDD,并使用toDF()将其转换回来。这个RDD API允许指定在数据上执行的任意Python函数。...如果只是想将一个scalar映射到一个scalar,或者将一个向量映射到具有相同长度的向量,则可以使用PandasUDFType.SCALAR。...利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...如果的 UDF 删除列或添加具有复杂数据类型的其他列,则必须相应地更改 cols_out。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。

    19.7K31

    【Python】PySpark 数据计算 ① ( RDD#map 方法 | RDD#map 语法 | 传入普通函数 | 传入 lambda 匿名函数 | 链式调用 )

    一、RDD#map 方法 1、RDD#map 方法引入 在 PySpark 中 RDD 对象 提供了一种 数据计算方法 RDD#map 方法 ; 该 RDD#map 函数 可以对 RDD 数据中的每个元素应用一个函数..., 该 被应用的函数 , 可以将每个元素转换为另一种类型 , 也可以针对 RDD 数据的 原始元素进行 指定操作 ; 计算完毕后 , 会返回一个新的 RDD 对象 ; 2、RDD#map 语法 map...方法 , 又称为 map 算子 , 可以将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ; RDD#map 语法 : rdd.map(fun) 传入的...) # 创建一个包含整数的 RDD rdd = sparkContext.parallelize([1, 2, 3, 4, 5]) # 应用 map 操作,将每个元素乘以 10 rdd2 = rdd.map...) # 创建一个包含整数的 RDD rdd = sparkContext.parallelize([1, 2, 3, 4, 5]) # 应用 map 操作,将每个元素乘以 10 rdd2 = rdd.map

    72310

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    ) # 将 字符串列表 转为 RDD 对象 rdd = sparkContext.parallelize([("Tom", 18), ("Tom", 3), ("Jerry", 12), ("Jerry...字符串 类型 , 每个字符串的内容是 整行的数据 ; # 将 文件 转为 RDD 对象 rdd = sparkContext.textFile("word.txt") # 内容为 ['Tom Jerry...展平文件, 先按照 空格 切割每行数据为 字符串 列表 # 然后展平数据解除嵌套 rdd2 = rdd.flatMap(lambda element: element.split(" ")) #...单词 字符串 , 第二个元素设置为 1 # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element: (element,...展平文件, 先按照 空格 切割每行数据为 字符串 列表 # 然后展平数据解除嵌套 rdd2 = rdd.flatMap(lambda element: element.split(" ")) print

    76920

    PySpark简介

    什么是PySpark? Apache Spark是一个大数据处理引擎,与MapReduce相比具有多个优势。通过删除Hadoop中的大部分样板代码,Spark提供了更大的简单性。...此外,由于Spark处理内存中的大多数操作,因此它通常比MapReduce更快,在每次操作之后将数据写入磁盘。 PySpark是Spark的Python API。...本指南的这一部分将重点介绍如何将数据作为RDD加载到PySpark中。...flatMap允许将RDD转换为在对单词进行标记时所需的另一个大小。 过滤和聚合数据 1. 通过方法链接,可以使用多个转换,而不是在每个步骤中创建对RDD的新引用。...应删除停用词(例如“a”,“an”,“the”等),因为这些词在英语中经常使用,但在此上下文中没有提供任何价值。在过滤时,通过删除空字符串来清理数据。

    6.9K30

    PySpark数据计算

    PySpark作为Spark的Python接口,使得数据处理和分析更加直观和便捷。...在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...setAppName("test_spark")sc = SparkContext(conf=conf)# 准备一个RDDrdd = sc.parallelize([1, 2, 3, 4, 5])# 通过map方法将全部数据都乘以...二、flatMap算子定义: flatMap算子将输入RDD中的每个元素映射到一个序列,然后将所有序列扁平化为一个单独的RDD。简单来说,就是对rdd执行map操作,然后进行解除嵌套操作。...= sc.parallelize(["hi python","Hello world","Happy day"])# 需求将RDD数据里面的单词一个个提取出来rdd2=rdd.map(lambda

    14910

    【Python】PySpark 数据计算 ② ( RDD#flatMap 方法 | RDD#flatMap 语法 | 代码示例 )

    一、RDD#flatMap 方法 1、RDD#flatMap 方法引入 RDD#map 方法 可以 将 RDD 中的数据元素 逐个进行处理 , 处理的逻辑 需要用外部 通过 参数传入 map 函数 ;...进行处理 , 然后再 将 计算结果展平放到一个新的 RDD 对象中 , 也就是 解除嵌套 ; 这样 原始 RDD 对象 中的 每个元素 , 都对应 新 RDD 对象中的若干元素 ; 3、RDD#flatMap...旧的 RDD 对象 oldRDD 中 , 每个元素应用一个 lambda 函数 , 该函数返回多个元素 , 返回的多个元素就会被展平放入新的 RDD 对象 newRDD 中 ; 代码示例 : # 将 字符串列表...数据处理 """ # 导入 PySpark 相关包 from pyspark import SparkConf, SparkContext # 为 PySpark 配置 Python 解释器 import...) # 将 字符串列表 转为 RDD 对象 rdd = sparkContext.parallelize(["Tom 18", "Jerry 12", "Jack 21"]) # 应用 map 操作

    40310

    Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(下)

    Spark 在节点上的持久数据是容错的,这意味着如果任何分区丢失,它将使用创建它的原始转换自动重新计算 ① cache()     默认将 RDD 计算保存到存储级别 MEMORY_ONLY ,这意味着它将数据作为未序列化对象存储在...会自动监视每个persist()和cache()调用,并检查每个节点上的使用情况,并在未使用或使用最近最少使用 (LRU) 算法时删除持久数据。...unpersist() 将 RDD 标记为非持久的,并从内存和磁盘中删除它的所有块: rddPersist2 = rddPersist.unpersist() 关于 cache() 和 persist(...PySpark 不是将这些数据与每个任务一起发送,而是使用高效的广播算法将广播变量分发给机器,以降低通信成本。 PySpark RDD Broadcast 的最佳用例之一是与查找数据一起使用。...③.Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(上) ④Pyspark学习笔记(四)弹性分布式数据集 RDD 综述(下) ⑤Pyspark学习笔记(五)RDD操作(一)_RDD转换操作

    2K40

    【错误记录】Python 中使用 PySpark 数据计算报错 ( SparkException: Python worker failed to connect back. )

    错误原因 : 没有为 PySpark 配置 Python 解释器 , 将下面的代码卸载 Python 数据分析代码的最前面即可 ; # 为 PySpark 配置 Python 解释器 import os...中使用 PySpark 数据计算 , # 创建一个包含整数的 RDD rdd = sparkContext.parallelize([1, 2, 3, 4, 5]) # 为每个元素执行的函数 def...数据处理 """ # 导入 PySpark 相关包 from pyspark import SparkConf, SparkContext # 创建 SparkConf 实例对象 , 该对象用于配置...) # 创建一个包含整数的 RDD rdd = sparkContext.parallelize([1, 2, 3, 4, 5]) # 为每个元素执行的函数 def func(element):...'] = 后的 Python.exe 路径换成你自己电脑上的路径即可 ; 修改后的完整代码如下 : """ PySpark 数据处理 """ # 导入 PySpark 相关包 from pyspark

    1.8K50

    【Python】PySpark 数据计算 ⑤ ( RDD#sortBy方法 - 排序 RDD 中的元素 )

    RDD 中的每个元素提取 排序键 ; 根据 传入 sortBy 方法 的 函数参数 和 其它参数 , 将 RDD 中的元素按 升序 或 降序 进行排序 , 同时还可以指定 新的 RDD 对象的 分区数...数据进行排序的核心代码如下 : # 对 rdd4 中的数据进行排序 rdd5 = rdd4.sortBy(lambda element: element[1], ascending=True, numPartitions...) # 将 文件 转为 RDD 对象 rdd = sparkContext.textFile("word.txt") print("查看文件内容 : ", rdd.collect()) # 通过 flatMap...展平文件, 先按照 空格 切割每行数据为 字符串 列表 # 然后展平数据解除嵌套 rdd2 = rdd.flatMap(lambda element: element.split(" ")) print...("查看文件内容展平效果 : ", rdd2.collect()) # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda element

    49510

    pyspark(一)--核心概念和工作原理

    在之前文章中我们介绍了大数据的基础概念,和pyspark的安装。本文我们主要介绍pyspark的核心概念和原理,后续有时间会持续介绍pyspark的使用。...它使用的RDD设计就尽可能去避免硬盘读写,而是将数据优先存储在内存,为了优化RDD尽量在内存中的计算流程,还引入了lazy特性。...计算的时候会通过compute函数得到每个分片的数据,每个分片被一个计算任务处理,分片决定了计算任务的粒度(2)只读:RDD是只读的,想要改变RDD的数据,只能基于现有的RDD通过操作算子转换到一个新的...(4)缓存:如果一个RDD被多次使用,不需要每次都去转换,我们可以将RDD缓存,这样在计算时我们只需要计算一次,下次使用从缓存取就好。再顺便说几个概念,Job,shuffle,stage和task。...,将pyspark程序映射到JVM中;在Executor端,spark也执行在JVA,task任务已经是序列后的字节码,不需要用py4j了,但是如果里面包含一些python库函数,JVM无法处理这些python

    3.3K40

    Spark编程实验二:RDD编程初级实践

    二、实验内容 1、pyspark交互式编程 给定数据集 data1.txt,包含了某大学计算机系的成绩,数据格式如下所示: Tom,DataBase,80 Tom,Algorithm,50 Tom...要求读取所有文件中的整数,进行排序后,输出到一个新的文件中,输出的内容个数为每行两个整数,第一个整数为第二个整数的排序位次,第二个整数为原待排序的整数。...)) > 0)) # 将每行数据转换成带有键值对的元组,键为元组类型 rdd3=rdd2.map(lambda x:((int(x.split(" ")[0]),int(x.split(..." ")[1])),x)) # 将数据中的键转换成SecondarySortKey类型 rdd4=rdd3.map(lambda x: (SecondarySortKey(x[0]),x...;(3)将数据转换成键值对的形式,再利用map、reduceByKey等函数进行计算和处理;(4)利用sortByKey等函数进行排序操作;(5)最后通过foreach等函数将结果输出。

    4200

    Pyspark学习笔记(四)弹性分布式数据集 RDD(下)

    当持久化或缓存一个 RDD 时,每个工作节点将它的分区数据存储在内存或磁盘中,并在该 RDD 的其他操作中重用它们。...Spark 在节点上的持久数据是容错的,这意味着如果任何分区丢失,它将使用创建它的原始转换自动重新计算 ①cache()     默认将 RDD 计算保存到存储级别MEMORY_ONLY ,这意味着它将数据作为未序列化对象存储在...会自动监视每个persist()和cache()调用,并检查每个节点上的使用情况,并在未使用或使用最近最少使用 (LRU) 算法时删除持久数据。...unpersist() 将 RDD 标记为非持久的,并从内存和磁盘中删除它的所有块: rddPersist2 = rddPersist.unpersist() 关于 cache() 和 persist(...PySpark 不是将这些数据与每个任务一起发送,而是使用高效的广播算法将广播变量分发给机器,以降低通信成本。 PySpark RDD Broadcast 的最佳用例之一是与查找数据一起使用。

    2.7K30

    利用PySpark对 Tweets 流数据进行情感分析实战

    如果批处理时间为2秒,则数据将每2秒收集一次并存储在RDD中。而这些RDD的连续序列链是一个不可变的离散流,Spark可以将其作为一个分布式数据集使用。 想想一个典型的数据科学项目。...在数据预处理阶段,我们需要对变量进行转换,包括将分类变量转换为数值变量、删除异常值等。Spark维护我们在任何数据上定义的所有转换的历史。...每个集群上的执行器将数据发送回驱动程序进程,以更新累加器变量的值。累加器仅适用于关联和交换的操作。例如,sum和maximum有效,而mean无效。...下面是我们工作流程的一个简洁说明: 建立Logistic回归模型的数据训练 我们在映射到标签的CSV文件中有关于Tweets的数据。...首先,我们需要定义CSV文件的模式,否则,Spark将把每列的数据类型视为字符串。

    5.4K10

    Spark 编程指南 (一) [Spa

    ) spark中对RDD的持久化操作是很重要的,可以将RDD存放在不同的存储介质中,方便后续的操作可以重复使用。...主要有cache、persist、checkpoint,checkpoint接口是将RDD持久化到HDFS中,与persist的区别是checkpoint会切断此RDD之前的依赖关系,而persist会保留依赖关系...你也可以使用bin/pyspark脚本去启动python交互界面 如果你希望访问HDFS上的数据集,你需要建立对应HDFS版本的PySpark连接。...SparkContext(conf=conf) appName:应用的名称,用户显示在集群UI上 master:Spark、Mesos或者YARN集群的URL,如果是本地运行,则应该是特殊的'local'字符串.../bin/pyspark --master local[4] 或者,将code.py添加到搜索路径中(为了后面可以import): .

    2.1K10

    PySpark数据类型转换异常分析

    ,抛“name 'DoubleType' is not defined”异常; 2.将读取的数据字段转换为DoubleType类型时抛“Double Type can not accept object...u'23' in type ”异常; 3.将字段定义为StringType类型,SparkSQL也可以对数据进行统计如sum求和,非数值的数据不会被统计。...为DoubleType的数据类型导致 解决方法: from pyspark.sql.types import * 或者 from pyspark.sql.types import Row, StructField...3.总结 ---- 1.在上述测试代码中,如果x1列的数据中有空字符串或者非数字字符串则会导致转换失败,因此在指定字段数据类型的时候,如果数据中存在“非法数据”则需要对数据进行剔除,否则不能正常执行。...(RDD.scala:323) [uvqmlxqpit.jpeg] [al3thynyrb.jpeg] 2.若不对“非法数据”进行剔除,则需要将该字段数据类型定义为StringType,可以正常对字段进行统计

    5.2K50
    领券