首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于pytorch卷积人脸表情识别–毕业设计「建议收藏」

    这篇文章记录一下我本科毕业设计的内容。我的课题是人脸表情识别,本来最开始按照历届学长的传统是采用MATLAB用传统的机器学习方法来实现分类的。但是鉴于我以前接触过一点点深度学习的内容,觉得用卷积神经来实现这个网络或许效果会好一点。于是我上网络上搜集了大量资料,照着做了一个基于Pytorch实现的卷积模型,加入了调用摄像头实时识别的程序。第一次接触机器视觉的东西,没有什么经验,还望指教。本次设计的参考来源于以下: 1.基于卷积神经网络的面部表情识别(Pytorch实现)–秋沐霖。链接:LINK 2.Pytorch基于卷积神经网络的人脸表情识别-marika。链接:LINK 3.Python神经网络编程-塔里克

    03

    脑机接口新应用,利用深度学习对无声语音信号解码

    浙江大学、中国矿业大学和伦敦大学的研究人员研究了可用于识别神经肌肉信号的空间特征和解码器。具体来说,研究人员提出了利用迁移学习和深度学习的方法,将表面肌电信号数据转换为包含丰富的时频域信息的声谱图。对于迁移学习,在大型图像数据集上使用一个预先训练好的Xception模型来生成特征。然后利用提取的特征对三种深度学习方法(MLP、CNN和bLSTM)进行训练,并对其进行评价,以识别词集中的发音肌肉运动。所提出的解码器成功地识别了无声语音,双向长短时记忆的准确率达到了90%,优于其他两种算法。实验结果验证了谱图特征和深度学习算法的有效性。

    02
    领券