首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

batchnorm pytorch_Pytorch中的BatchNorm

前言: 本文主要介绍在pytorch中的Batch Normalization的使用以及在其中容易出现的各种小问题,本来此文应该归属于[1]中的,但是考虑到此文的篇幅可能会比较大,因此独立成篇,希望能够帮助到各位读者...整个过程见流程图,BN在输入后插入,BN的输出作为规范后的结果输入的后层网络中。...β\gamma, \betaγ,β:分别是仿射中的weightweight\mathrm{weight}weight和biasbias\mathrm{bias}bias,在pytorch中用weight...在pytorch中,用running_mean和running_var表示[5] 在Pytorch中使用 Pytorch中的BatchNorm的API主要有: torch.nn.BatchNorm1d(...num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)1 2 3 4 5 一般来说pytorch中的模型都是继承

70210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Pytorch中构建流数据集

    如何创建一个快速高效的数据管道来生成更多的数据,从而在不花费数百美元在昂贵的云GPU单元上的情况下进行深度神经网络的训练? 这是我们在MAFAT雷达分类竞赛中遇到的一些问题。...这里就需要依靠Pytorch中的IterableDataset 类从每个音轨生成数据流。...IterableDataset 注:torch.utils.data.IterableDataset 是 PyTorch 1.2中新的数据集类 一旦音轨再次被分割成段,我们需要编写一个函数,每次增加一个音轨...它与Pytorch中的经典(Map)Dataset类的区别在于,对于IterableDataset,DataLoader调用next(iterable_Dataset),直到它构建了一个完整的批处理,而不是实现一个接收映射到数据集中某个项的索引的方法...结论 在Pytorch中学习使用流数据是一次很好的学习经历,也是一次很好的编程挑战。这里通过改变我们对pytorch传统的dataset的组织的概念的理解,开启一种更有效地处理数据的方式。

    1.2K40

    Pytorch中的Sequential

    春恋慕Pytorch中nn.Sequential是nn.Module的一个子类,Sequential已经实现了forward函数,因此不需要编写forward函数,Sequential会自动进行前向传播...,这要求神经网络前一个模块的输出大小和后一个模块的输入大小是一致的,使用Sequential容器封装神经网络,使得代码更简洁,更结构化,不过这也使得神经网络灵活性变差,比如无法定义自己的forward等...现将https://ymiir.top/index.php/2022/02/05/add_pooling_layer/文章中的神经网络改写成使用Sequential定义神经网络测试效果。...#便于得知训练中每个阶段网络的输出 step=0 #遍历dataloader中的batch #分batch喂入数据集 for data in dataloader: #获取一组图像,一组标签...色彩有些许差别的原因可能是初始的权重不同而导致的不同,因为我们的卷积核以及池化核中的数据是程序初始随机生成的。

    58820

    PyTorch中CNN的Forward方法 | PyTorch系列(十七)

    我们通过扩展nn.Module PyTorch基类来创建网络,然后在类构造函数中将网络层定义为类属性。现在,我们需要实现网络的 forward() 方法,最后,我们将准备训练我们的模型。...准备数据 构建模型 创建一个扩展nn.Module基类的神经网络类。 在类构造函数中,将网络层定义为类属性。...在深度学习基础知识系列中,我们在有关层的文章中解释说,不是输入或输出层的所有层都称为隐藏层,这就是为什么我们将这些卷积层称为隐藏层。...诸如层,激活函数和权重之类的所有术语仅用于帮助描述不同的部分。 不要让这些术语混淆整个网络只是函数的组合这一事实,而我们现在正在做的就是在forward()方法中定义这种组合。...这就是我们在PyTorch中实现神经网络forward方法的方式。 PyTorch在__ call __()方法中运行的额外代码就是我们从不直接调用forward()方法的原因。

    4.2K50

    Pytorch | Pytorch中自带的数据计算包——Tensor

    今天是Pytorch专题的第二篇,我们继续来了解一下Pytorch中Tensor的用法。 上一篇文章当中我们简单介绍了一下如何创建一个Tensor,今天我们继续深入Tensor的其他用法。...在上面这个例子当中,我们把原tensor x中的[0, 1]的位置修改成了2,我们print y会发现y当中的元素同样发生了变化。...如果你学过TensorFlow的话,你会发现matmul是TensorFlow当中点乘的api,Pytorch当中沿用了这个命名。 可以看到,mm和matmul计算得到的结果是一致的。...我相信这些函数的含义大家应该都可以理解。 转置与变形 Tensor当中的转置操作和Numpy中不太相同,在Numpy当中,我们通过.T或者是transpose方法来进行矩阵的转置。...比较好的办法是使用to方法来进行设备转移。 将tensor转移到GPU上进行计算可以利用GPU的并发性能提升计算的效率,这是Pytorch当中常用的手段。

    1K10

    PyTorch中Linear层的原理 | PyTorch系列(十六)

    这意味着这两个例子中的线性函数是不同的,所以我们使用不同的函数来产生这些输出。 ? 记住权矩阵中的值定义了线性函数。这演示了在训练过程中,随着权重的更新,网络的映射是如何变化的。...让我们显式地将线性层的权值矩阵设置为与我们在另一个示例中使用的权值矩阵相同。 fc.weight = nn.Parameter(weight_matrix) PyTorch模块的权值需要是参数。...这个事实是一个重要的PyTorch概念,因为在我们的层和网络中,__call __()与forward()方法交互的方式是用的。 我们不直接调用forward()方法,而是调用对象实例。...在对象实例被调用之后,在底层调用了__ call __方法,然后调用了forward()方法。这适用于所有的PyTorch神经网络模块,即网络和层。 让我们在PyTorch源代码中看看这一点。...在__ call __()方法中运行的额外代码就是我们从不直接调用forward()方法的原因。

    10.2K81

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    为此,来自Petuum Inc 和卡内基梅隆大学的研究者开源了一个通用机器学习包——Texar-PyTorch,结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。 ?...基于其已有的 TensorFlow 版本,Texar-PyTorch 结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。...Texar-PyTorch 功能 通过结合 TF 中的最佳特性与 PyTorch 的直观编程模型,Texar-Pytorch 为构建 ML 应用提供全面支持: 最先进的模型构建模块—搭建 ML 模型就和搭积木一样...代码示例 5:典型的手写 train-eval 循环。 代码非常冗长。当你需要添加或更改一些功能时,事情会变得更加复杂。现在,如果使用 Executors,该代码将是什么样子? ?...答:只需在`valid_metrics`中添加一个新的度量即可: ? 问:如果我们想要进行超参数调优并多次训练模型,该怎么办? 答:只需为你想要测试的每一组超参数创建 Executor。

    78010

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    为此,来自Petuum Inc 和卡内基梅隆大学的研究者开源了一个通用机器学习包——Texar-PyTorch,结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。 ?...基于其已有的 TensorFlow 版本,Texar-PyTorch 结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。...Texar-PyTorch 功能 通过结合 TF 中的最佳特性与 PyTorch 的直观编程模型,Texar-Pytorch 为构建 ML 应用提供全面支持: 最先进的模型构建模块—搭建 ML 模型就和搭积木一样...代码示例 5:典型的手写 train-eval 循环。 代码非常冗长。当你需要添加或更改一些功能时,事情会变得更加复杂。现在,如果使用 Executors,该代码将是什么样子? ?...答:只需在`valid_metrics`中添加一个新的度量即可: ? 问:如果我们想要进行超参数调优并多次训练模型,该怎么办? 答:只需为你想要测试的每一组超参数创建 Executor。

    68130

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    为此,来自Petuum Inc 和卡内基梅隆大学的研究者开源了一个通用机器学习包——Texar-PyTorch,结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。 ?...基于其已有的 TensorFlow 版本,Texar-PyTorch 结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。...Texar-PyTorch 功能 通过结合 TF 中的最佳特性与 PyTorch 的直观编程模型,Texar-Pytorch 为构建 ML 应用提供全面支持: 最先进的模型构建模块—搭建 ML 模型就和搭积木一样...代码示例 5:典型的手写 train-eval 循环。 代码非常冗长。当你需要添加或更改一些功能时,事情会变得更加复杂。现在,如果使用 Executors,该代码将是什么样子? ?...答:只需在`valid_metrics`中添加一个新的度量即可: ? 问:如果我们想要进行超参数调优并多次训练模型,该怎么办? 答:只需为你想要测试的每一组超参数创建 Executor。

    70430

    Texar-PyTorch:在PyTorch中集成TensorFlow的最佳特性

    为此,来自Petuum Inc 和卡内基梅隆大学的研究者开源了一个通用机器学习包——Texar-PyTorch,结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。...基于其已有的 TensorFlow 版本,Texar-PyTorch 结合了 TensorFlow 和 PyTorch 中的许多实用功能与特性。...Texar-PyTorch 功能 通过结合 TF 中的最佳特性与 PyTorch 的直观编程模型,Texar-Pytorch 为构建 ML 应用提供全面支持: 最先进的模型构建模块—搭建 ML 模型就和搭积木一样...代码示例 5:典型的手写 train-eval 循环。 代码非常冗长。当你需要添加或更改一些功能时,事情会变得更加复杂。现在,如果使用 Executors,该代码将是什么样子? ?...答:只需在`valid_metrics`中添加一个新的度量即可: ? 问:如果我们想要进行超参数调优并多次训练模型,该怎么办? 答:只需为你想要测试的每一组超参数创建 Executor。

    46430

    PyTorch在Windows下的安装

    简介 PyTorch进行神经网络的学习十分有用, 但是,其在中国大陆的安装包下载十分缓慢。这里介绍一下我在Windows10中安装PyTorch的过程与建议。...进入cmd,在命令行中输入以下命令: python --version 看到以下图片,就可以确定你现在装的python版本,针对你的版本,选择相应的PyTorch版本。 ?...CUDA CUDA的选择与你的机器中安装的显卡有关。 只要你的显卡有CUDA的核心就行了。...下载安装包到本地 这里需要提醒一下,PyTorch的版本在国内下载是非常非常非常慢的,去网上搜一搜遍地都是下载慢的哀嚎声。...因此,建议大家在Package一项中选择“pip”安装,然后在“Run this Command”这一栏,直接复制代码中的两个网址, 以我上面的版本选择为例,即在新的浏览器页面中直接输入: https:

    21K1813

    PyTorch中张量的创建方法的选择 | Pytorch系列(五)

    文 |AI_study 欢迎回到PyTorch神经网络编程系列。在这篇文章中,我们将仔细研究将数据转换成PyTorch张量的主要方法之间的区别。 ?...张量和PyTorch张量之间的抽象概念的区别在于PyTorch张量给了我们一个具体的实现,我们可以在代码中使用它。 ?...在上一篇文章中《Pytorch中张量讲解 | Pytorch系列(四)》,我们了解了如何使用Python列表、序列和NumPy ndarrays等数据在PyTorch中创建张量。...二、Default dtype Vs Inferred dtype 好了,在我们把torch.Tensor()构造函数从我们的列表中删除之前,让我们复习一下打印出来的张量输出的不同之处。...在PyTorch中创建张量的最佳选择 考虑到所有这些细节,这两个是最佳选择: torch.tensor() torch.as_tensor() torch.tensor() 调用是一种 go-to 调用

    2K41

    PyTorch中view的用法

    相当于numpy中resize()的功能,但是用法可能不太一样。...我的理解是:把原先tensor中的数据按照行优先的顺序排成一个一维的数据(这里应该是因为要求地址是连续存储的),然后按照参数组合成其他维度的tensor。...比如说是不管你原先的数据是[[[1,2,3],[4,5,6]]]还是[1,2,3,4,5,6],因为它们排成一维向量都是6个元素,所以只要view后面的参数一致,得到的结果都是一样的。...]]])print(a.view(3,2))将会得到:tensor([[1., 2.],         [3., 4.],         [5., 6.]])相当于就是从1,2,3,4,5,6顺序的拿数组来填充需要的形状...但是如果您想得到如下的结果:tensor([[1., 4.],         [2., 5.],         [3., 6.]])

    1.1K00

    pytorch中的线性回归

    pytorch中的线性回归 简介: 线性回归是一种基本的机器学习模型,用于建立输入特征与连续输出之间的关系。...它假设输入特征与输出之间的关系是线性的,并且尝试找到最佳的线性拟合,以最小化预测值与真实值之间的差距。...我们的目标是找到最佳的 W 和 b ,使得预测值 \hat{Y} 与真实值 Y 之间的误差最小化。...通常使用最小化均方误差(Mean Squared Error,MSE)来衡量预测值与真实值之间的差距。 实现线性回归 在 PyTorch 中,我们可以利用自动求导功能和优化器来实现线性回归模型。...下面是一个简单的线性回归示例代码: 我们的目的是:预测输入特征X与对应的真实标签Y之间的关系。

    4100

    PyTorch中的梯度累积

    我们在训练神经网络的时候,超参数batch_size的大小会对模型最终效果产生很大的影响,通常的经验是,batch_size越小效果越差;batch_size越大模型越稳定。...这就是梯度累加(Gradient Accumulation)技术了 以PyTorch为例,正常来说,一个神经网络的训练过程如下: for idx, (x, y) in enumerate(train_loader...中的loss.backward()执行的是梯度累加的操作,所以当你调用4次loss.backward()后,这4个mini-batch的梯度都会累加起来。...通过这种延迟更新的手段,可以实现与采用大batch_size相近的效果 References pytorch中的梯度累加(Gradient Accumulation) Gradient Accumulation...in PyTorch PyTorch中在反向传播前为什么要手动将梯度清零?

    1.5K20
    领券