本文已收录于Pytorch系列专栏: Pytorch入门与实践 专栏旨在详解Pytorch,精炼地总结重点,面向入门学习者,掌握Pytorch框架,为数据分析,机器学习及深度学习的代码能力打下坚实的基础...文章目录 一、张量拼接与切分 1.1 torch.cat 1.2 torch.stack 1.3 torch.chunk 1.4 torch.split 二、张量索引 2.1 torch.index_select...:在维度dim 上,按 index 索引数据 返回值:依index 索引数据拼接的张量 input : 要索引的张量 dim 要索引的维度 index 要索引数据的序号 code: t = torch.randint...,而torch.index_select通过该张量索引原tensor并且拼接返回。...返回值:一维张量(无法确定true的个数,因此也就无法显示原来的形状,因此这里返回一维张量) input : 要索引的张量 mask 与 input 同形状的布尔类型张量 t = torch.randint
在某些情况下,我们需要用Pytorch做一些高级的索引/选择,所以在这篇文章中,我们将介绍这类任务的三种最常见的方法:torch.index_select, torch.gather and torch.take...torch.index_select torch.index_select 是 PyTorch 中用于按索引选择张量元素的函数。它的作用是从输入张量中按照给定的索引值,选取对应的元素形成一个新的张量。...中用于按照指定索引从输入张量中收集值的函数。...它允许你根据指定的索引从输入张量中取出对应位置的元素,并组成一个新的张量。...torch.take torch.take 是 PyTorch 中用于从输入张量中按照给定索引取值的函数。
在PyTorch中都是使用张量的概念和数据结构来进行运算的。 搞过机器学习的朋友可以知道,并不是只有PyTorch是处理多维数组的唯一库,像常用的科学计算库NumPy,都是以处理多维数组为基础的。...2.从列表到张量 搞过Python的应该都知道列表这个东西,也可以认为是数组,比如像下面这样定义一个列表 a = [1.0, 2.0, 3.0] a[0] #按位置索引访问列表元素 这时候就返回其中的值...#这里看到了,最后一个变成了2,这些操作跟列表操作基本没啥区别 3.张量的本质 书上的这一小段我没太看明白,就文字描述来说,大意是列表中的元素在实际内存的存储中使用的是随机区块,而PyTorch中的张量使用的往往是连续内存区块...使用shape方法查看张量的形状,这里返回的size表示这是一个三行二列的张量(数组) points.shape out:torch.size([3,2]) tips:当我们用索引访问张量中的元素,或者张量中的张量时...另外给出一个weights,这个weights就是把 tips: PyTorch Torch.randn()返回由可变参数大小(定义输出张量的形状的整数序列)定义的张量,其中包含标准正态分布的随机数。
PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队开发,专为深度学习研究和开发而设计。PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。...在 PyTorch 中,张量以 "类" 的形式封装起来,对张量的一些运算、处理的方法被封装在类中。...PyTorch 计算的数据都是以张量形式存在, 我们需要掌握张量各种运算。...('cuda') PyTorch 默认会将张量创建在 CPU 控制的内存中, 即: 默认的运算设备为 CPU。...以下是使用 PyTorch 进行张量基本运算的代码案例: import torch # 创建张量 x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5
文章目录 1. tensor 张量 2. 运算 3....切片、形状size()、改变形状view() 4. item() 只能读取一个元素 参考 http://pytorch123.com/ 1. tensor 张量 empty 不初始化 import...torch.tensor([[5.5, 3], [2,4]]) tensor([[5.5000, 3.0000], [2.0000, 4.0000]]) new_* 方法,继承之前张量的属性
tensor复制可以使用clone()函数和detach()函数即可实现各种需求。
1、在pytorch中,有以下9种张量类型 ?...([3, 4, 5]) torch.FloatTensor 3 3、命名张量 张量命名是一个非常有用的方法,这样可以方便地使用维度的名字来做索引或其他操作,大大提高了可读性、易用性,防止出错。...(dim=1, index=0) # PyTorch 1.3之后 NCHW = [‘N’, ‘C’, ‘H’, ‘W’] images = torch.randn(32, 3, 56, 56, names...不支持tensor[::-1]这样的负步长操作,水平翻转可以通过张量索引实现 # 假设张量的维度为[N, C, H, W]. tensor = tensor[:,:,:,torch.arange(tensor.size...例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量, 而torch.stack的结果是3x10x5的张量。
目录 张量转换为 numpy 数组 numpy 转换为张量 标量张量和数字的转换 张量拼接操作 张量索引操作 张量转换为 numpy 数组 使用 Tensor.numpy 函数可以将张量转换为 ndarray...([[[5, 6], [6, 0], [9, 2]], [[5, 1], [9, 4], [0, 1]]]) 张量索引操作...张量索引操作允许我们对多维数组中的元素进行访问和操作。...张量索引操作是处理多维数据的基础,它不仅能够让我们访问和修改数据,还能够帮助我们实现各种复杂的数据操作和算法。...我们来看一下张量索引基本操作: 简单行、列索引 import torch data = torch.randint(0, 10, [4, 5]) print(data) tensor([[0, 7
前言 在PyTorch中,张量是核心数据结构,它是一个多维数组,类似Numpy中的数组。张量不仅仅是存储数据的容器,还是进行各种数学运算和深度学习操作的基础。...在PyTorch中,张量是tensor.Tensor 的实例,可以通过不同的方式创建,如直接从Python列表、Numpy数组或通过特定函数生成。...变为(3, 8) 张量的原理 PyTorch中的张量是基于Tensor类实现的,它提供了对底层存储的抽象。...了解步幅有助于理解在张量中进行索引和切片时的性能。...# 获取张量的步幅 stride = tensor_3d.stride() 张量的操作 PyTorch提供了丰富的张量操作,包括数学运算、逻辑运算、索引和切片等。 这里列举最常见的几种操作: 1.
这是我参与「掘金日新计划 · 10 月更文挑战」的第1天,点击查看活动详情 前言 PyTorch 建立在张量之上,PyTorch 张量是一个 n 维数组,类似于 NumPy 数组。...将 NumPy 数组转换为 PyTorch 张量: y=torch.from_numpy(x) print(y) print(y.dtype) 在设备之间移动张量 默认情况下,PyTorch 张量存储在...CPU 上,PyTorch 张量可以在使用 GPU 来加速计算。...然后,我们将 PyTorch 张量转换为 NumPy 数组,然后进行相反的转换操作。同时,我们还介绍了如何使用 type() 方法更改张量数据类型。...然后,我们学习了如何使用 numpy() 方法将 PyTorch 张量转换为 NumPy 数组。 之后,我们使用 from_numpy(x) 方法将 NumPy 数组转换为 PyTorch 张量。
张量的创建 张量(Tensors)类似于NumPy的ndarrays ,但张量可以在GPU上进行计算。从本质上来说,PyTorch是一个处理张量的库。一个张量是一个数字、向量、矩阵或任何n维数组。...size: 张量的形状 out: 输出的张量 layout: 内存中布局形式 device: 所在设备 requires_grad: 是否需要梯度 torch.zeros(2, 3) tensor...) torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False) 功能:依input形状创建全0张量...size: 张量的形状 fill_value: 张量的值 torch.arange(start=0, end. step=1, out=None, dtype=None, layout=torch.strided...# mean为张量, std为张量 torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) tensor([0.8532
前言 学习张量的拼接、索引和形状操作在深度学习和数据处理中至关重要。 拼接操作允许我们合并不同来源或不同维度的数据,以丰富模型输入或构建复杂网络结构。...索引操作则提供了精确访问和操作张量中特定元素或子张量的能力,这对于数据预处理、特征提取和错误调试尤为关键。...在本小节,我们主要学习如何将 numpy 数组和 PyTorch Tensor 的转化方法. 1.1 张量转换为 numpy 数组 使用 Tensor.numpy 函数可以将张量转换为 ndarray...张量索引操作 我们在操作张量时,经常需要去进行获取或者修改操作,掌握张量的花式索引操作是必须的一项能力。...在 PyTorch 中,有些张量是由不同的数据块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理,例如: 一个张量经过了 transpose 或者 permute 函数的处理之后
文 |AI_study 欢迎回到PyTorch神经网络编程系列。在这篇文章中,我们将通过PyTorch的张量来更深入地探讨PyTorch本身。废话不多说,我们开始吧。 ?...PyTorch中的张量是我们在PyTorch中编程神经网络时会用到的数据结构。 在对神经网络进行编程时,数据预处理通常是整个过程的第一步,数据预处理的一个目标是将原始输入数据转换成张量形式。...---- 引入Pytorch中的张量 torch.Tensor类示例 PyTorch中的张量就是torch.Tensor的Python类的一个实例。...PyTorch支持多种设备的使用,它们是使用类似这样的索引指定的: > device = torch.device('cuda:0') > device device(type='cuda', index...使用多个设备时,要记住一件事,张量之间的张量操作必须在同一设备上存在的张量之间进行。 当我们成为“高级”用户时,通常会使用多个设备,所以现在无需担心。
学习目标 掌握张量基本运算 掌握阿达玛积、点积运算 掌握PyTorch指定运算设备 PyTorch 计算的数据都是以张量形式存在, 我们需要掌握张量各种运算....------------------------ torch.Size([3, 4, 4]) torch.Size([3, 5, 5]) torch.Size([3, 4, 8]) 指定运算设备 PyTorch...我们也可以将张量创建在 GPU 上, 能够利用对于矩阵计算的优势加快模型训练。将张量移动到 GPU 上有两种方法: 1. 使用 cuda 方法 2. 直接在 GPU 上创建张量 3....test01(): data = torch.tensor([10, 20 ,30]) print('存储设备:', data.device) # 如果安装的不是 gpu 版本的 PyTorch...对于输入都是三维的张量相当于 bmm 运算 对数输入的 shape 不同的张量, 对应的最后几个维度必须符合矩阵运算规则 将变量移动到 GPU 设备的方法,例如: cuda 方法、直接在 GPU 上创建张量
本文介绍张量 (Tensor) 的基本知识 。 参考 深入浅出PyTorch ,系统补齐基础知识。...本节目录 张量的简介 PyTorch如何创建张量 PyTorch中张量的操作 PyTorch中张量的广播机制 张量 几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量...我们可以使用索引操作取得张量的长、宽等数据维度。...类似于 numpy 需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。...中的 Tensor 支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,具体使用方法可参考官方文档。
函数修改张量形状,第二个参数为-1 reshaped_tensor = tensor.reshape(1, -1) print("修改后的张量:") print(reshaped_tensor) 原始张量...transpose:transpose用于交换张量的两个维度。它并不改变张量中元素的数量,也不改变每个元素的值,只是改变了元素在张量中的排列顺序。...如果你需要保持张量中元素的相对位置不变,仅调整张量的维度顺序,那么应该使用transpose;如果你需要改变张量的整体形状而不关心维度的顺序,reshape会是正确的选择。...,只能用于存储在整块内存中的张量。...在 PyTorch 中,有些张量是由不同的数据块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理,如果张量存储在不连续的内存中,使用view函数会导致错误。
PyTorch 提供了这么多方式从数组和列表中创建 Tensor。...比如传入参数 mean 的张量形状为 1, 2,而传入参数 std 的张量形状为 2, 2,PyTorch 会根据广播机制的规则将传入 mean 参数的张量形状广播成 2, 2。...「虽然传入的两个张量元素总个数不相等,但是通过 PyTorch 中的广播机制可以将符合广播机制的张量扩展成相同元素总个数的两个张量;」 >>> import torch >>> # 传入mean和std...PyTorch 的官方文档中强调:"当输入参数 mean 和 std 的张量形状不匹配的时候,输出张量的形状由传入 mean 参数的张量形状所决定。"...创建序列张量 在循环计算或者对张量进行索引时,经常需要创建一段连续的整型或浮点型的序列张量。PyTorch 提供了一些能够创建序列张量的方法。
创建序列张量 在循环计算或者对张量进行索引时,经常需要创建一段连续的整型或浮点型的序列张量。PyTorch 提供了一些能够创建序列张量的方法。...,张量的元素值为在 [start, end] 之间,步长为 step 的整型序列,包含 end 本身; 使用 torch.range() 函数会出现 Warning 警告:未来的 Pytorch 版本会将...c = torch.range(0, 10) 对于张量 b 来说,由于 ,因此最终张量 b 为长度为 5 的 1D 张量。...= None, requires_grad = False) 可以创建长度为 steps 的 1D 张量,张量的元素值为在 之间均匀间隔的 steps 个点。...序列张量的值为 ; >>> import torch >>> # 创建元素值为范围[0, 10]之间均匀间隔的5个值的1D浮点型序列张量 >>> a = torch.linspace(0., 10.
一、前言 本文将介绍PyTorch中张量的索引和切片操作。... PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。...张量变形 【深度学习】Pytorch教程(十):PyTorch数据结构:4、张量操作(1):张量变形 2. 索引 在PyTorch中,可以使用索引和切片操作来访问和修改张量的特定元素或子集。...高级切片 除了基本的切片操作外,还可以使用逗号将多个切片组合在一起,实现对不同维度的切片操作。...7, 9]]) 使用高级切片选择了张量中从第二行开始到最后一行的子集,并且每隔一列选择一个元素。
0.], [ 0., 0., 1.]]) 2. indexing,slicing,joining 及 mutating 操作 ---- 2.1 indexing操作 ---- pytorch...input, dim, index, out=None) 根据指定索引在指定轴上索引。...keepdim 若为 True,每个运算结果为一个一维张量,实际上没有降维。 torch.argmax(input, dim, keepdim=False):返回张量内最大元素的索引。...torch.argmin(input, dim, keepdim=False, out=None):返回张量内最小元素的索引。...torch.cummin(input, dim, out=None):值与索引为当前位置以前的最小值和最小值的索引。
领取专属 10元无门槛券
手把手带您无忧上云