首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python -使用散点图堆叠两个直方图

Python中可以使用散点图来堆叠两个直方图。散点图是一种用于展示两个变量之间关系的图表类型,而直方图则用于展示数据的分布情况。

在Python中,可以使用matplotlib库来绘制散点图和直方图。以下是一个示例代码:

代码语言:txt
复制
import matplotlib.pyplot as plt
import numpy as np

# 生成随机数据
x = np.random.randn(1000)
y = np.random.randn(1000)

# 绘制散点图
plt.scatter(x, y, alpha=0.5)

# 绘制直方图
plt.hist(x, bins=30, alpha=0.5)
plt.hist(y, bins=30, alpha=0.5)

# 设置图表标题和坐标轴标签
plt.title("Scatter plot with stacked histograms")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")

# 显示图表
plt.show()

在这个例子中,我们首先生成了两组随机数据x和y,然后使用scatter()函数绘制散点图,使用hist()函数分别绘制x和y的直方图。通过设置alpha参数可以调整散点图和直方图的透明度,使得两者可以堆叠在一起。

这种图表可以用于展示两个变量之间的关系,并同时展示它们的分布情况。例如,可以用来比较两个不同组的数据在不同变量上的分布情况,或者用来观察两个变量之间的相关性。

腾讯云提供了云计算相关的产品和服务,其中包括云服务器、云数据库、云存储等。您可以通过访问腾讯云官方网站(https://cloud.tencent.com/)了解更多关于这些产品的详细信息和使用方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python Matplotlib数据可视化 绘制箱形图、散点图直方图

文章目录 Python中可以通过matplotlib模块的pyplot子库来完成绘图。Matplotlib可用于创建高质量的图表和图形,也可以用于绘制和可视化结果。...本文用python对一批运动员数据进行操作,读取数据、数据预处理、matplotlib数据可视化,熟悉用python进行数据分析和可视化的基本方法,并绘制箱形图、散点图直方图。...使用箱形图展示出不同技术等级 (Skill_Moves) 的运动员的评分 (Rating) 分布情况,即横轴为运动员的技术等级,纵轴为评分。...绘制散点图 绘制年龄 (Age) 与评分 (Rating) 构成的散点图 import pandas as pd import matplotlib.pyplot as plt import matplotlib...x:指定要绘制直方图的数据 # bins:指定直方图条形的个数 color:设置直方图的填充色 edgecolor:指定直方图的边界色 plt.hist(x=ages, bins=num_bin

4.7K40
  • Pandas数据可视化

    pandas库是Python数据分析的核心库 它不仅可以加载和转换数据,还可以做更多的事情:它还可以可视化 pandas绘图API简单易用,是pandas流行的重要原因之一 Pandas 单变量可视化...如果两个类别在饼图中彼此不相邻,很难进行比较  可以使用柱状图图来替换饼图 Pandas 双变量可视化 数据分析时,我们需要找到变量之间的相互关系,比如一个变量的增加是否与另一个变量有关,数据可视化是找到两个变量的关系的最佳方法...; 散点图 最简单的两个变量可视化图形是散点图散点图中的一个点,可以表示两个变量 reviews[reviews['price'] < 100].sample(100).plot.scatter(x=...散点图最适合使用相对较小的数据集以及具有大量唯一值的变量。 有几种方法可以处理过度绘图。...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是

    11910

    为什么你觉得Matplotlib用起来很困难?因为你还没看过这个思维导图

    我们对于这张思维导图中的主要图例做一些解释: 散点图 散点图非常适合显示两个变量之间的关系,因为您可以直接看到数据的原始分布。您还可以通过如下图所示的对组进行颜色编码来查看不同数据组的这种关系。 ?...用散点图来绘制这些图会非常杂乱,很难真正理解和看到发生了什么。直线图非常适合这种情况,因为它基本上可以快速总结两个变量(百分比和时间)的协方差。同样,我们也可以通过颜色编码来使用分组。 ?...使用条形图(而不是散点图)可以让我们清楚地看到每个箱子频率之间的相对差异。...有人可能会认为,你必须制作两个独立的直方图,把它们放在一起比较。但是,实际上有一个更好的方法:我们可以用不同的透明度覆盖直方图。看看下面的图。均匀分布的透明度设为0。5这样我们就能看到它的背后。...这允许使用直接查看同一图上的两个分布。 ?

    1.4K32

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    散点图 由于可以直接看到原始数据的分布,散点图对于展示两个变量之间的关系非常有用。你还可以通过用颜色将数据分组来观察不同组数据之间的关系,如下图所示。...使用这种柱形(而不是散点图等)可以清楚地可视化每一个箱体(X 轴的一个等距区间)间频率的变化。...直方图案例 下面展示了 Matplotlib 中绘制直方图的代码。这里有两个步骤需要注意,首先,n_bins 参数控制直方图的箱体数量或离散化程度。...首先,我们设定的水平区间要同时满足两个变量的分布。根据水平区间的范围和箱体数,我们可以计算每个箱体的宽度。其次,我们在一个图表上绘制两个直方图,需要保证一个直方图存在更大的透明度。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。

    2.4K60

    5 种快速易用的 Python Matplotlib 数据可视化方法

    散点图 由于可以直接看到原始数据的分布,散点图对于展示两个变量之间的关系非常有用。你还可以通过用颜色将数据分组来观察不同组数据之间的关系,如下图所示。...使用这种柱形(而不是散点图等)可以清楚地可视化每一个箱体(X 轴的一个等距区间)间频率的变化。...直方图案例 下面展示了 Matplotlib 中绘制直方图的代码。这里有两个步骤需要注意,首先,n_bins 参数控制直方图的箱体数量或离散化程度。...首先,我们设定的水平区间要同时满足两个变量的分布。根据水平区间的范围和箱体数,我们可以计算每个箱体的宽度。其次,我们在一个图表上绘制两个直方图,需要保证一个直方图存在更大的透明度。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。

    2K40

    5个快速而简单的数据可视化方法和Python代码

    为给定的情况选择适当的数据可视化技术的图表 散点图 散点图非常适合显示两个变量之间的关系,因为你可以直接看到数据的原始分布。...这是一个很容易使用的函数,它从头到尾创建了一个散点图!...用散点图来画这些会非常混乱,很难理解和理解发生了什么。直线图非常适合这种情况,因为它们基本上可以快速总结为两个变量(百分比和时间)的协方差。同样,我们也可以使用颜色编码分组。...这允许直接在同一个图上查看这两个分布。 ? 叠加直方图 对于叠加直方图,需要在代码中设置一些东西。首先,我们设置水平范围以适应这两个变量分布。...最后,我们在同一块图上绘制两个直方图,其中一个稍微透明一些。

    2.1K10

    教程 | 如何利用散点图矩阵进行数据可视化

    本文,我们将介绍如何使用 Seaborn 可视化库(https://seaborn.pydata.org/)在 Python 中启动和运行散点图矩阵。...散点图矩阵会构建两种基本图形:直方图散点图。位于对角线位置的直方图让我们看到了每一个变量的分布,而对角线上下的散点图则展示了变量两两之间的关系。...这张图具有更多的信息,但是还存在一些问题:正如对角线上看到的一样,我认为堆叠直方图可解释性不是很好。展示来自多类别的单变量分布的一个更好方法就是密度图(density plot)。...对角线上的密度图使得对比洲之间的分布相对于堆叠直方图更加容易。改变散点图的透明度增加了图的可读性,因为这些图存在相当多的重叠(ovelapping)。 现在是默认散点图矩阵的最后一个例子。...当我们想要创建自定义函数将不同的信息匹配到该图时,使用 PairGrid 类的实际好处就会显露出来。例如,我可能希望在散点图上增加两个变量的皮尔逊相关系数。

    2.6K80

    有这5小段代码在手,轻松实现数据可视化(Python+Matplotlib)

    首先,请大家看看这张大的地图,它能指引你根据不同情况,选择正确的可视化方法: 根据情况选择适当的数据可视化技术 散点图 散点图非常适合展现两个变量间关系,因为,图中可以直接看出数据的原始分布。...同样,也可使用不同颜色来对多组数据分组。 女性获得学士学位的百分比(美国) 代码与散点图类似,只是一些微小的参数改动。...下图为不同IQ人群所占比例的直方图。从中可以清楚地看出中心期望值和中位数,看出它遵循正态分布。使用直方图(而不是散点图)可以清楚地显示出不同组数据频率之间的相对差异。...这里有两个参数需要注意。第一个参数是n_bins参数,用于控制直方图的离散度。...使用不同颜色进行堆叠,对不同服务器之间进行比较,从而能查看并了解每天中哪台服务器的工作效率最高,负载具体为多少。

    1.3K60

    这5小段代码轻松实现数据可视化(Python+Matplotlib)

    本文要讲的是Matplotlib,一个强大的Python可视化库。一共5小段代码,轻松实现散点图、折线图、直方图、柱状图、箱线图,每段代码只有10行,也是再简单不过了吧!...根据情况选择适当的数据可视化技术 散点图 散点图非常适合展现两个变量间关系,因为,图中可以直接看出数据的原始分布。还可以通过设置不同的颜色,轻松地查看不同组数据间的关系,如下图所示。...下图为不同IQ人群所占比例的直方图。从中可以清楚地看出中心期望值和中位数,看出它遵循正态分布。使用直方图(而不是散点图)可以清楚地显示出不同组数据频率之间的相对差异。...正态分布的IQ 下面是用Matplotlib库创建直方图的代码。这里有两个参数需要注意。第一个参数是n_bins参数,用于控制直方图的离散度。...使用不同颜色进行堆叠,对不同服务器之间进行比较,从而能查看并了解每天中哪台服务器的工作效率最高,负载具体为多少。

    97030

    Python绘制hist直方图使用手册

    对于初学python绘图的小伙伴来说,彻底弄清hist直方图绘制需要花费较多时间。 本文旨在让你花最少的时间,彻底弄懂hist函数原理和绘制方法。 本文目录 什么是直方图?...二、matplotlib.pyplot.hist参数详解 在python中用matplotlib.pyplot.hist函数绘制直方图,本小节详细阐述该函数的常用参数。...'bar'是传统的条形直方图,'barstacked'是堆叠的条形直方图,'step'是未填充的阶梯直方图,只有外边框,'stepfilled'是有填充的阶梯直方图。...当图中有多个数据集时使用该参数,若取值为True,则输出数据集累计堆叠的结果,若取值为False,则多个数据集柱子并排排列。...三、实例理解 本小节用一些模拟的公司薪资数据,建立直方图,方便大家理解上一章中常用参数。 1 bins参数理解 首先来看下只有薪资数据(x)和直方图分割区间(bins)两个参数的绘图代码。

    3.8K11

    《数据可视化基础》第四章:可视化图形推荐

    我们可以使用分组或者堆叠的条形图来进行展示。同时也可以把两个类别映射到X和Y轴上,这样就得到了热图来进行展示了。 ?...堆积的直方图 (Stacked histograms) 和重叠的密度曲线(overlapping densities) 可以对较小数量的分布进行更深入的比较,尽管堆积的直方图很难解释,最好避免。...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...具体的使用条件我们会在后面的几章进行讲解。 ? 4 x-y 相关性 当我们想显示两个连续性变量的变化的时候,可以使用散点图来进行可视化。...如果我们有两个响应变量的时间序列,我们可以绘制一个连接的散点图,其中我们首先在散点图中绘制两个响应变量,然后连接对应于相邻时间点的点。我们可以使用平滑线来表示较大数据集中的趋势。 ?

    2.4K30

    Python量化投资】金融应用中用matplotlib库实现的数据可视化

    首先要先导入NumPy和matplotlib这两个库,主要的绘图函数在子库matplotlib.pyplot中: ? 散点图 要介绍的第一种图表是散点图,这种图表中一个数据集的值作为其他数据集的x值。...下面例子中,将使用二维数据集和其他一些数据。 ? ? 直方图 另一种图表类型直方图也常常用于金融收益中。它是金融应用中的重要图表类型。主要应用plt.hist这个函数。...下面显示的是两个数据集的数据在直方图堆叠。 ? ? 箱形图 另一种实用图表类型是箱形图。和直方图类似,它可以简洁概述数据集的特性,很容易比较多个数据集。通过下面的例子我们绘制出了这类图表。 ?...我们可以使用NumPy的meshgrid函数,根据两个1维ndarray对象生成这样的坐标系: ?...作为python数据可视化的主力,它是一个相当强大的库,具有复杂的API。

    4.8K50

    《七天数据可视化之旅》第五天:常用图表对比

    折线图和面积图不能互换的情况: 显示构成或占比时,应该使用面积图☞堆叠面积图or百分比堆叠面积图。 ?...不同点: 堆叠面积图: 堆叠面积图的分类字段,一般是时间序列。 当既需要分析整体随时间的变化趋势,又要了解整体的各构成项随时间的变化情况时,应该使用堆叠面积图】。...4)总结 相同点: 散点图和气泡图,均是用来展示数据分布情况的一种图形。 散点图和气泡图,都是将两个字段映射到x,y轴的位置上,(x,y)的取值确定一个圆点或气泡在直角坐标系中的位置。...不同点: 散点图: 一般用来展示二维数据(x,y)的分布,侧重于研究二维数据的两个变量x,y之间的相关性,如身高和体重之间的相关关系。...相较于散点图,气泡图不太适合过多数据容量的情况,气泡太多会使图表难以阅读。 此外,对于气泡图中隐藏的一些数据信息,通常可以使用交互来辅助图标信息的阅读,如悬停显示详细数据、缩放观测被遮盖的数据点等。

    1.3K10

    ggpubr!一键绘制出版级论文配图,绘图小白福音...

    今天是我的可视化学习社群上线的第46天,目前学员129人,可视化学习社区以我的书籍《科研论文配图绘制指南-基于Python》为基础进行拓展,提供「课堂式」教学视频,还有更多拓展内容,可视化技巧远超书籍本身...ggpubr提供了一系列简单易用的函数,使用户能够快速创建各种常见的统计图形,如线图、散点图、柱状图、箱线图、直方图、小提琴图、QQ图、核密度图、热力图和配对图等。...ggpubr支持处理多组数据、分组、堆叠、分面、添加回归线、椭圆、置信区间、自定义标记等功能,可以满足各种不同的数据展示需求。...ggscatter():创建散点图,用于展示两个连续变量之间的关系。支持添加回归线、椭圆和置信区间。 ggbarplot():创建柱状图,用于展示不同组别之间的比较。可以设置分组、堆叠和分面。...ggheatmap():创建热力图,用于展示两个变量之间的相关性。支持调整颜色映射、标签和注释。 ggpaired():创建配对图,用于展示两组配对数据之间的差异。

    33610

    收藏起来!比 matplotlib 效率高十倍的数据可视化神器!

    整个堆叠顺序是cufflinks>plotly>plotly.js>d3.js,意味着我们同时获得了 Python 的编程高效性和d3强大的图形交互能力。...在开始前,我们需要使用 pip install cufflinks plotly 在 Python 环境中安装这两个包,然后在 jupyter notebook 中导入这两个包: 单变量分布:直方图和箱线图...在这里,我使用的数据来源是我个人在 medium 网站上所写过文章的统计信息,让我们先来制作一个关于文章点赞次数的交互式直方图(df 是一个标准的 Pandas 数据结构)。...对于由第三个分类变量着色的双变量散点图,我们使用: ?...同样,我们仍然只使用一行代码就可以完成这些超级图表。 散点图矩阵 当我们想要探索许多变量之间的关系时,散点图矩阵是非常好的选择。 ?

    1.8K60
    领券