首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python Pandas重采样不重采样

Python Pandas重采样与不重采样基础概念

重采样(Resampling) 是指将时间序列从一个频率转换到另一个频率的过程。例如,从每日数据转换为每月数据,或者从每小时数据转换为每分钟数据。Pandas库提供了强大的重采样功能,可以方便地进行时间序列数据的频率转换。

不重采样 则是指不对数据进行频率转换,保持原始数据的频率不变。

重采样的优势

  1. 简化数据分析:通过重采样,可以将高频数据转换为低频数据,从而简化数据分析过程。
  2. 减少数据量:高频数据通常包含大量冗余信息,通过重采样可以减少数据量,提高计算效率。
  3. 适应不同分析需求:不同的分析任务可能需要不同频率的数据,重采样可以灵活地适应这些需求。

重采样的类型

  1. 上采样(Upsampling):将低频数据转换为高频数据。例如,将每月数据转换为每日数据。
  2. 下采样(Downsampling):将高频数据转换为低频数据。例如,将每日数据转换为每月数据。

重采样的应用场景

  1. 金融分析:在股票、期货等金融市场中,经常需要对时间序列数据进行重采样,以便进行趋势分析、波动率计算等。
  2. 气象数据分析:气象数据通常以小时或分钟为单位记录,但在进行长期趋势分析时,可能需要将其转换为月度或年度数据。
  3. 物联网数据处理:物联网设备通常会产生大量高频数据,通过重采样可以减少数据量,提高数据处理效率。

重采样遇到的问题及解决方法

问题1:重采样后数据丢失

原因:在进行下采样时,如果原始数据中存在缺失值或重复值,可能会导致重采样后的数据丢失。

解决方法

代码语言:txt
复制
import pandas as pd

# 示例数据
data = pd.Series([1, 2, 3, 4, 5], index=pd.date_range('2020-01-01', periods=5, freq='D'))

# 填充缺失值
data = data.resample('M').ffill()

print(data)

问题2:重采样后数据不准确

原因:在进行上采样时,如果直接使用插值方法,可能会导致数据不准确。

解决方法

代码语言:txt
复制
import pandas as pd

# 示例数据
data = pd.Series([1, 2, 3], index=pd.date_range('2020-01-01', periods=3, freq='M'))

# 使用更合适的插值方法
data_upsampled = data.resample('D').interpolate(method='time')

print(data_upsampled)

参考链接

通过以上内容,您可以了解Python Pandas中重采样与不重采样的基础概念、优势、类型、应用场景以及常见问题的解决方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pandas的resample采样的使用

Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。...降采样:高频数据到低频数据 升采样:低频数据到高频数据 主要函数:resample()(pandas对象都会有这个方法) resample方法的参数 参数 说明 freq 表示采样频率,例如‘M’、‘...在向前或向后填充时,允许填充的最大时期数 kind = None 聚合到时期(‘period’)或时间戳(‘timestamp’),默认聚合到时间序列的索引类型 convention = None 当采样时期时...2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 到此这篇关于pandas...的resample采样的使用的文章就介绍到这了,更多相关pandas resample采样内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

3.4K10
  • Python 批量采样、掩膜、坡度提取

    今日分享: 后台回复“批量”可以获取批量采样、批量掩膜、批量坡度提取和批量分区统计的代码,不过你们懂得。 01 主要内容 ?...1.以30m空间分辨率的DEM数据为基础数据,采样为40、50、60、70、80、90、100、110、120 m共10组不同分辨率的DEM。 2....1.2 将采样得到10组不同分辨率的DEM,利用行政区的矢量边界,编写Python代码进行批量剪裁,具体代码如下所示: import arcpy,os,glob from arcpy import env...(n) + ".tif"这一句代码出现了错误,我们对DEM数据进行采样,从30米到120米一共有10景DEM数据,输出的每个DEM的名称肯定是不一样的,都是根据DEM数据的分辨率来进行命名,采用的Python...后台回复“批量”可以获取批量采样、批量掩膜、坡度批量提取和批量分区统计的代码,emmmmmm,不过你们懂得== 作者|不许人间见白头 排版|Moon 校阅|数读菌、不许人间见白头

    1.8K10

    python采样和上采样

    前言 由于工作数据量较大,训练模型很少直接单机python,一般都采用SparkML,最近把SparkML的工作使用python简单的写了一下,先写个上下采样,最终目的是为了让正负样本达到均衡(有人问:...基础知识准备 如何获取dataframe的行数 pandas.DataFrame.shape 返回数据帧的形状 df.shape[0] 返回行数 de.shape[1] 返回列数 只听到从架构师办公室传来架构君的声音...方法2: df.drop(df.index, inplace=True) 方法3: df_1 = df.drop(range(len(df)),axis=0) 读取数据和获取正负样本数量 import pandas...frac = int(len(f) / len(z)) # 创建一个数据结构和之前一致,但空的dataframe zcopy = z.iloc[0:0].copy() # 上采样就是复制少量的样本直到和多量的达到平衡...= frac: zcopy = zcopy.append(z) sample_data = pd.concat([zcopy,f]) 查看采样的结果: 下采样采样就是从多量的样本中抽取一部分数据直到和少量的样本达到平衡

    1.4K10

    基于Python 的语音采样函数解析

    因为工作中会经常遇到不同采样率的声音文件的问题,特意写了一下采样的程序。 原理就是把采样点转换到时间刻度之后再进行插值,经过测试,是没有问题的。 #!.../usr/bin/env python # -*- coding: utf-8 -*- # @Time : 17-7-21 下午2:32 # @Author : Lei.Jinggui # @Site...多线程的退出/停止的一种是实现思路 在使用多线程的过程中,我们知道,python的线程是没有stop/terminate方法的,也就是说它被启动后,你无法再主动去退出它,除非主进程退出了,注意,是主进程...= 0 for i in range(5): counts += 1 time.sleep(1) print(f'main thread:{counts:04d} s') 以上这篇基于Python...的语音采样函数解析就是小编分享给大家的全部内容了,希望能给大家一个参考。

    1.1K31

    时间序列的采样pandas的resample方法介绍

    在本文中,我们将深入研究Pandas中重新采样的关键问题。 为什么采样很重要? 时间序列数据到达时通常带有可能与所需的分析间隔不匹配的时间戳。...采样分类 采样主要有两种类型: 1、Upsampling 上采样可以增加数据的频率或粒度。这意味着将数据转换成更小的时间间隔。 2、Downsampling 下采样包括减少数据的频率或粒度。...在为模型训练准备时间序列数据时,采样是必不可少的。 采样过程 采样过程通常包括以下步骤: 首先选择要重新采样的时间序列数据。该数据可以采用各种格式,包括数值、文本或分类数据。...评估采样的数据,以确保它符合分析目标。检查数据的一致性、完整性和准确性。 Pandas中的resample()方法 resample可以同时操作Pandas Series和DataFrame对象。...采样是时间序列数据处理中的一个关键操作,通过进行采样可以更好地理解数据的趋势和模式。 在Python中,可以使用Pandas库的resample()方法来执行时间序列的采样。 作者:JI

    87230

    Python+pandas使用采样技术按时间段查看员工业绩

    如果DataFrame结构的索引是日期时间数据,或者包含日期时间数据列,可以使用resample()方法进行采样,实现按时间段查看员工业绩的功能。...convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None) 其中,参数rule用来指定采样的时间间隔...,例如'7D'表示每7天采样一次;参数how用来指定如何处理两个采样时间之间的数据,不过该参数很快会被丢弃不用了;参数label = 'left'表示使用采样周期的起始时间作为结果DataFrame的index...,label='right'表示使用采样周期的结束时间作为结果DataFrame的index。...假设有文件“超市营业额2.xlsx”存放于C:\Python36文件夹中,其中有工号、姓名、日期、时段、交易额、柜台这几列数据,包含2019年3月1日至2019年3月31日的数据,格式如图所示: ?

    88820

    使用libswresample库实现音频采样

    一.初始化音频采样器   在音频采样时,用到的核心结构是SwrContext,我们可以通过swr_alloc()获取swr_ctx实例,然后通过av_opt_set_int()函数和av_opt_set_sample_fmt...()函数来设置音频采样的参数,最后通过swr_init()函数初始化SwrContext实例即可。...  音频采样用到的核心函数是swr_convert(),不过在进行采样的时候,需要注意每次要去判断目标采样点个数是否大于最大目标采样点个数,如果大于,需要重新给输出缓冲区分配内存空间。...<<endl; return -1; } } return 0; } 三.将采样后的数据写入输出文件   在初始化采样器的时候,我们设置了目标采样格式为...write_packed_data_to_file(uint8_t *data,int32_t size){ fwrite(data,1,size,output_file); } 四.销毁音频采样

    35950

    时间序列 | 采样及频率转换

    采样及频率转换 采样(resampling)指的是将时间序列从一个频率转换到另一个频率的处理过程。是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。...rule : DateOffset, Timedelta or str 表示采样频率,例如‘M’、‘5min’,Second(15) how : str 用于产生聚合值的函数名或数组函数,例如'mean...: {'start', 'end', 's', 'e'}, default 'start' 当采样时期时,将低频率转换到高频率所采用的约定('start'或'end')。...-07 0.140673 2000-04-08 -1.234146 2000-04-09 -0.835341 Freq: D, Length: 100, dtype: float64 pandas...时间戳 采样 In frame = pd.DataFrame(np.random.randn(2, 4), index=pd.date_range('1/

    1.5K20

    参数化技巧 - 连续分布采样

    参数化(Reparameterization)技巧是一种在机器学习和统计学中常用的技术,主要用于将一个随机变量转换成另一个随机变量,同时保证它们的概率分布保持不变,在生成模型中有着重要应用。...简介 参数化技巧,就是从一个分布 p_{\theta}(z) 中进行采样,而该分布是带有参数 {\theta} 的,如果直接进行采样采样动作是离散的,其不可微),是没有梯度信息的,那么在BP反向传播的时候就不会对参数梯度进行更新...参数化技巧可以保证我们从 p_{\theta}(z) 进行采样,同时又能保留梯度信息。...连续分布采样 我们考虑以下形式: J_{\theta}=\int p_{\theta}(z) f(z) d z 其中 。这样就解决了采样导致梯度不可传递的问题。

    56210

    【Android FFMPEG 开发】FFMPEG 音频采样 ( 初始化音频采样上下文 SwrContext | 计算音频延迟 | 计算输出样本个数 | 音频采样 swr_convert )

    FFMPEG 音频采样流程 III . FFMPEG 音频采样 IV . FFMPEG 初始化音频采样上下文 SwrContext V . FFMPEG 计算音频延迟样本数 VI ....FFMPEG 计算音频采样输出样本个数 VII . FFMPEG 输出样本缓冲区初始化 VIII . FFMPEG 音频采样 IX . FFMPEG 音频采样输出的采样数据字节数计算 X ....初始化音频采样上下文 : 音频采样需要先初始化 音频采样上下文 SwrContext , 首先要调用 swr_alloc_set_opts ( ) 初始化内存 并 设置 SwrContext 参数...FFMPEG 输出样本缓冲区初始化 ---- 音频采样后 , 需要初始化一段内存 , 用于保存采样后的样本数据 ; 为其分配内存 , 并初始化内存数据 ; /** * 存放采样后的数据缓冲区 ,...FFMPEG 音频采样输出的采样数据字节数计算 ---- 1 .

    2.5K20

    ffplay源码分析6-音频采样

    音频采样 FFmpeg解码得到的音频帧的格式未必能被SDL支持,在这种情况下,需要进行音频采样,即将音频帧格式转换为SDL支持的音频格式,否则是无法正常播放的。...音频采样涉及两个步骤: 1) 打开音频设备时进行的准备工作:确定SDL支持的音频格式,作为后期音频采样的目标格式 2) 音频播放线程中,取出音频帧后,若有需要(音频帧格式与SDL支持音频格式不匹配...)则进行采样,否则直接输出 6.1 打开音频设备 音频设备的打开实际是在解复用线程中实现的。..._t **)af->frame->extended_data; // 采样输出参数1:输出音频缓冲区尺寸 // 采样输出参数2:输出音频缓冲区 uint8...is->audio_buf1) return AVERROR(ENOMEM); // 音频采样:返回值是采样后得到的音频数据中单个声道的样本数

    1.6K30

    使用采样评估Python中机器学习算法的性能

    第二个最好的方法是使用来自统计学的聪明技术,称为重采样方法,使您可以准确估计算法在新数据上的表现。...在这篇文章中,您将了解如何使用Python和scikit-learn中的采样方法来评估机器学习算法的准确性。 让我们开始吧。...更新Oct / 2017:用Python 3更新打印语句。 使用Douglas Waldron的 Resampling Photo (保留某些权利)评估Python中机器学习算法的性能。...关于方法 在本文中,使用Python中的小代码方法来展示采样方法。 每个方法都是独立设计的,因此您可以将其复制并粘贴到您的项目中并立即使用。 在糖尿病的数据集的皮马印第安人发生在每个配方中使用。...你有任何关于采样方法或这个职位的问题吗?在评论中提出您的问题,我会尽我所能来回答。

    3.4K121

    ArcPy批量掩膜、批量采样栅格图像

    本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件进行批量掩膜与批量采样的操作。   首先,我们来明确一下本文的具体需求。...我们希望,依据一个已知的面要素矢量图层文件,对上述文件夹中的全部.tif格式遥感影像进行掩膜,并对掩膜后的遥感影像文件再分别加以批量采样,使得其空间分辨率为1000 m。   ...对全部图像文件完成掩膜操作后,我们继续进行采样操作。...和前述代码思路类似,我们依然还是先遍历文件,并在其原有文件名后添加"_Re.tif"后缀,作为新文件的文件名;随后,利用Resample_management()函数进行采样。...其中,1000表示采样的空间分辨率,在这里单位为米;"BILINEAR"表示用双线性插值的方法完成采样

    27610
    领券