首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

(数据科学学习手札06)Python在数据框操作上的总结(初级篇)

pd.DataFrame()中的常用参数: data:可接受numpy中的ndarray,标准的字典,dataframe,其中,字典的值可以为Series,arrays,常数或列表 index:数据框行的索引值...(0)还是按列向右拼接(1),默认0 ingore_index:axis所在方向上标签在合并后是否重置,默认False keys:是否对拼接的几个素材数据框进行二级标号(即在每部分子数据框拼接开始处创建外层标签...,储存对两个数据框中重复非联结键列进行重命名的后缀,默认为('_x','_y') indicator:是否生成一列新值_merge,来为合并后的每行标记其中的数据来源,有left_only,right_only...join()的合并对象 on:指定的合并依据的联结键列 how:选择合并的方式,'left'表示左侧数据框行数不可改变,只能由右边适应左边;'right'与之相反;'inner'表示取两个数据框联结键列的交集作为合并后新数据框的行...;'outer'表示以两个数据框联结键列的并作为新数据框的行数依据,缺失则填充缺省值  lsuffix:对左侧数据框重复列重命名的后缀名 rsuffix:对右侧数据框重复列重命名的后缀名 sort:表示是否以联结键所在列为排序依据对合并后的数据框进行排序

14.3K51
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python常用小技巧总结

    数据类型互转 相同字段合并 Python小技巧 简单的表达式 列表推导式 交换变量 检查对象使用内存情况 合并字典 字符串分割成列表 字符串列表创建字符串 Python查看图片 itertools模块combinations...df[[col1,col2]] # 以DataFrame形式返回多列 s.iloc[0] # 按位置选取数据 s.loc['index_one'] # 按索引选取数据 df.iloc[0,:]...从Python3.5开始,合并字典的操作更加简单 如果key重复,那么第一个字典的key会被覆盖 d1 ={"a":1,"b":2} d2 = {"b":2,"c":4} m = {**d1,**d2....get()方法 D.get(key[,default=None]) key – 字典中要查找的键。...关系好的定义为共同参演电影数量最多 1 .字典的get方法 D.get(key[,default=None]) key – 字典中要查找的键。

    9.4K20

    Pandas 25 式

    目录 查看 pandas 及其支持项的版本 创建 DataFrame 重命名列 反转行序 反转列序 按数据类型选择列 把字符串转换为数值 优化 DataFrame 大小 用多个文件建立 DataFrame...rename()方法改列名是最灵活的方式,它的参数是字典,字典的 Key 是原列名,值是新列名,还可以指定轴向(axis)。 ? 这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。...把每个 CSV 文件读取成 DataFrame,合并后,再删除导入的原始 DataFrame,但这种方式占用内存太多,而且要写很多代码。 使用 Python 内置的 glob 更方便。 ?...用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?...这里要让 concat() 函数按列合并,axis='columns。 ? 现在 drinks 有 6 列啦! 11.

    8.4K00

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    目录 查看 pandas 及其支持项的版本 创建 DataFrame 重命名列 反转行序 反转列序 按数据类型选择列 把字符串转换为数值 优化 DataFrame 大小 用多个文件建立 DataFrame...rename()方法改列名是最灵活的方式,它的参数是字典,字典的 Key 是原列名,值是新列名,还可以指定轴向(axis)。 ? 这种方式的优点是可以重命名任意数量的列,一列、多列、所有列都可以。...把每个 CSV 文件读取成 DataFrame,合并后,再删除导入的原始 DataFrame,但这种方式占用内存太多,而且要写很多代码。 使用 Python 内置的 glob 更方便。 ?...用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?...这里要让 concat() 函数按列合并,axis='columns。 ? 现在 drinks 有 6 列啦! 11.

    7.2K20

    在 Python 中,通过列表字典创建 DataFrame 时,若字典的 key 的顺序不一样以及部分字典缺失某些键,pandas 将如何处理?

    pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表里的每个元素是一个字典)创建 DataFrame 时,如果每个字典的...当通过列表字典来创建 DataFrame 时,每个字典通常代表一行数据,字典的键(key)对应列名,而值(value)对应该行该列下的数据。如果每个字典中键的顺序不同,pandas 将如何处理呢?...列顺序:在创建 DataFrame 时,pandas 会检查所有字典中出现的键,并根据这些键首次出现的顺序来确定列的顺序。...这意味着如果第一个字典的键顺序是 ['A', 'B', 'C'] 而第二个字典的键顺序是 ['B', 'C', 'A'],那么生成的 DataFrame 将会以第一个字典中键出现的顺序作为列顺序,即先...输出结果将展示如下: 我们从上面的示例就容易观察到: 生成的 DataFrame 中的列顺序遵循了首次出现键的顺序。

    13500

    python数据科学系列:pandas入门详细教程

    关于series和dataframe数据结构本身,有大量的方法可用于重构结构信息: rename,可以对标签名重命名,也可以重置index和columns的部分标签列信息,接收标量(用于对标签名重命名)...或字典(用于重命名行标签和列标签) reindex,接收一个新的序列与已有标签列匹配,当原标签列中不存在相应信息时,填充NAN或者可选的填充值 set_index/reset_index,互为逆操作,...rename中是接收字典,允许只更改部分信息) rename_axis,重命名标签名,rename中也可实现相同功能 ?...query,按列对dataframe执行条件查询,一般可用常规的条件查询替代 ?...4 合并与拼接 pandas中又一个重量级数据处理功能是对多个dataframe进行合并与拼接,对应SQL中两个非常重要的操作:union和join。

    15K20

    Python之数据规整化:清理、转换、合并、重塑

    Python之数据规整化:清理、转换、合并、重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来。...数据风格的DataFrame合并操作 2.1 数据集的合并(merge)或连接(jion)运算时通过一个或多个键将行链接起来的。如果没有指定,merge就会将重叠列的列名当做键,最好显示指定一下。...索引上的合并 DataFrame有merge和join索引合并。 4. 重塑和轴向旋转 有许多用于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转(pivot)运算。...4.1 重塑层次化索引 层次化索引为DataFrame数据的重排任务提供了良好的一致性方式。主要两种功能: stack:将数据的列“旋转”为行。...unstack:将数据的行“旋转”为列。 5. 数据转换 5.1 利用函数或映射进行数据转换 Series的map方法可以接受一个函数或含有映射关系的字典型对象。

    3.1K60

    Pandas速查卡-Python数据科学

    Josh Devlin 2017年2月21日 Pandas可以说是数据科学最重要的Python包。...(dict) 从字典、列名称键、数据列表的值导入 输出数据 df.to_csv(filename) 写入CSV文件 df.to_excel(filename) 写入Excel文件 df.to_sql(...) 所有列的唯一值和计数 选择 df[col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择...col1,ascending=[True,False]) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值 df.groupby([col1,col2...查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数 加入/合并 df1.append

    9.2K80

    图解pandas模块21个常用操作

    3、从字典创建一个系列 字典(dict)可以作为输入传递,如果没有指定索引,则按排序顺序取得字典键以构造索引。如果传递了索引,索引中与标签对应的数据中的值将被拉出。 ?...6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。你可以把它想象成一个电子表格或SQL表,或者 Series 对象的字典。...8、从字典创建DataFrame 从字典创建DataFrame,自动按照字典进行列索引,行索引从0开始。 ?...14、聚合函数 data.function(axis=0) 按列计算 data.function(axis=1) 按行计算 ? 15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ?...19、数据合并 两个DataFrame的合并,pandas会自动按照索引对齐,可以指定两个DataFrame的对齐方式,如内连接外连接等,也可以指定对齐的索引列。 ?

    9K22

    Pandas速查手册中文版

    数据选取 df[col]:根据列名,并以Series的形式返回列 df[[col1, col2]]:以DataFrame形式返回多列 s.iloc[0]:按位置选取数据 s.loc['index_one...']:按索引选取数据 df.iloc[0,:]:返回第一行 df.iloc[0,0]:返回第一列的第一个元素 数据清理 df.columns = ['a','b','c']:重命名列名 pd.isnull...([col1,col2]):返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值 df.pivot_table(index...):返回按列col1分组的所有列的均值 data.apply(np.mean):对DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1):对DataFrame...中的每一行应用函数np.max 数据合并 df1.append(df2):将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部 df1

    12.2K92

    python数据分析——数据分类汇总与统计

    1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...使用函数分组 比起使用字典或Series,使用Python函数是一种更原生的方法定义分组映射。 【例6】以上一小节的DataFrame为例,使用len函数计算一个字符串的长度,并用其进行分组。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引...其中参数index指定“行”键,columns指定“列”键。...为True时,行/列小计和总计的名称; 【例17】对于DataFrame格式的某公司销售数据workdata.csv,存储在本地的数据的形式如下,请利用Python的数据透视表分析计算每个地区的销售总额和利润总额

    82910

    Pandas全景透视:解锁数据科学的黄金钥匙

    DataFrame的一列就是Series,Series可以转化为DataFrame,调用方法函数to_frame()即可 Series 是 pandas 中的一种数据结构,可以看作是带有标签的一维数组。...向量化操作:Pandas支持向量化操作,这意味着可以对整个数据集执行单个操作,而不是逐行或逐列地进行迭代。向量化操作通常比纯Python循环更快,因为它们可以利用底层的优化和硬件加速。...0或’index’,表示按行删除;1或’columns’,表示按列删除。inplace:是否原地替换。布尔值,默认为False。如果为True,则在原DataFrame上进行操作,返回值为None。...函数根据 'A' 列合并两个 DataFramemerged_df = pd.merge(df1, df2, on='A')print("合并后的 DataFrame:")print(merged_df...)运行结果合并后的 DataFrame: A B C0 1 4 71 2 5 82 3 6 9在本文中,我们深入探讨了Pandas库中一系列高效的数据处理方法。

    11710

    Pandas数据合并:concat与merge

    一、引言在数据分析领域,Pandas是一个强大的Python库,它提供了灵活高效的数据结构和数据分析工具。其中,数据的合并操作是数据预处理中不可或缺的一部分。...(二)参数解析objs:要连接的对象列表,可以是DataFrame或Series。axis:指定连接的方向,默认为0,表示按行连接;1表示按列连接。join:控制连接时如何处理索引对齐。...(result)三、merge的基本用法(一)概述merge函数更类似于SQL中的JOIN操作,它根据某些键(通常是共同的列)来合并两个DataFrame。...对于merge,如果用于合并的键不是唯一的,可能会导致意外的结果。确保用于合并的键是唯一标识符,或者根据业务需求明确合并规则。(二)列名冲突问题在合并过程中,很容易遇到列名冲突的情况。...对于concat,可以通过选择特定的列或者重命名列来避免。对于merge,使用sufixes参数可以很好地解决这个问题。

    14210

    Python科学计算:Pandas

    数据结构:Series和DataFrame Series是个定长的字典序列。说是定长是因为在存储的时候,相当于两个ndarray,这也是和字典结构最大的不同。...它包括了行索引和列索引,我们可以将DataFrame 看成是由相同索引的Series组成的字典类型。...重命名列名columns,让列表名更容易识别 如果你想对DataFrame中的columns进行重命名,可以直接使用rename(columns=new_names, inplace=True) 函数,...数据表合并 有时候我们需要将多个渠道源的多个数据表进行合并,一个DataFrame相当于一个数据库的数据表,那么多个DataFrame数据表的合并就相当于多个数据库的表合并。...2. inner内连接 inner内链接是merge合并的默认情况,inner内连接其实也就是键的交集,在这里df1, df2相同的键是name,所以是基于name字段做的连接: df3 = pd.merge

    2K10
    领券