首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python pandas :具有各自计数的数据透视表?

在使用 Pandas 进行数据分析时,数据透视表(pivot table)是一个非常有用的工具。它允许你对数据进行分组、聚合和总结。你可以使用 pivot_table 方法来创建数据透视表,并且可以通过 aggfunc 参数来指定聚合函数,例如计数(count)。

以下是一个详细的示例,展示如何使用 Pandas 创建一个具有各自计数的数据透视表。

示例数据

假设我们有一个包含销售数据的 DataFrame:

代码语言:javascript
复制
import pandas as pd

data = {
    'Date': ['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03'],
    'Product': ['A', 'B', 'A', 'B', 'A'],
    'Sales': [100, 150, 200, 250, 300]
}

df = pd.DataFrame(data)
print(df)

输出:

代码语言:javascript
复制
         Date Product  Sales
0  2023-01-01       A    100
1  2023-01-01       B    150
2  2023-01-02       A    200
3  2023-01-02       B    250
4  2023-01-03       A    300

创建数据透视表

我们希望创建一个数据透视表,显示每个日期和产品的销售数量。

代码语言:javascript
复制
pivot_table = pd.pivot_table(df, 
                             index='Date', 
                             columns='Product', 
                             values='Sales', 
                             aggfunc='count', 
                             fill_value=0)
print(pivot_table)

输出:

代码语言:javascript
复制
Product      A  B
Date              
2023-01-01   1  1
2023-01-02   1  1
2023-01-03   1  0

解释

  • index='Date':将日期作为行索引。
  • columns='Product':将产品作为列。
  • values='Sales':我们感兴趣的值是销售数量。
  • aggfunc='count':我们使用 count 作为聚合函数来计算每个组的数量。
  • fill_value=0:将缺失值填充为 0。

进一步的示例

假设我们还想计算每个日期和产品的销售总额和平均销售额。我们可以使用 aggfunc 参数传递一个字典来指定多个聚合函数。

代码语言:javascript
复制
pivot_table = pd.pivot_table(df, 
                             index='Date', 
                             columns='Product', 
                             values='Sales', 
                             aggfunc={'Sales': ['sum', 'mean', 'count']}, 
                             fill_value=0)
print(pivot_table)

输出:

代码语言:javascript
复制
          Sales              
              sum   mean count
Product        A    B    A    B    A  B
Date                                    
2023-01-01   100  150  100  150    1  1
2023-01-02   200  250  200  250    1  1
2023-01-03   300    0  300    0    1  0

解释

  • aggfunc={'Sales': ['sum', 'mean', 'count']}:我们指定了多个聚合函数,包括总和(sum)、平均值(mean)和计数(count)。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

左手pandas右手Python,带你学习数据透视

数据透视数据分析工作中经常会用到一种工具。Excel本身具有强大透视表功能,Pythonpandas也有透视实现。...本文使用两个工具对同一数据源进行相同处理,旨在通过对比方式,帮助读者加深对数据透视理解。 数据源简介: 本文数据源来自网络,很多介绍pandas文章都使用了该数据。...Python代码部分,我都做了详细注释,Excel操作流程我也做了比较详细说明。后台回复“透视”可以获得数据和代码。...,列表里可以传入多个参数,如 table.query('Rep == ["Craig Booker", "John Smith"]') 2.excel实现 做好数据透视具有行和列筛选功能。...小结与备忘: index-对应透视“行”,columns对应透视列,values对应透视‘值’,aggfunc对应值汇总方式。用图形表示如下: ?

3.6K40
  • pandas中使用数据透视

    Python数据分析 记录 分享 成长 什么是透视?...经常做报表小伙伴对数据透视应该不陌生,在excel中利用透视可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视是一种汇总了更广泛数据统计信息。 典型数据格式是扁平,只包含行和列,不方便总结信息: 而数据透视可以快速抽取有用信息: pandas也有透视?...pandas作为编程领域最强大数据分析工具之一,自然也有透视功能。 在pandas中,透视操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据,解决大麻烦。...pivot_table函数使用,其透视表功能基本和excel类似,但pandas聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级用法。

    3K20

    pandas中使用数据透视

    什么是透视? 经常做报表小伙伴对数据透视应该不陌生,在excel中利用透视可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视是一种汇总了更广泛数据统计信息。 典型数据格式是扁平,只包含行和列,不方便总结信息: ? 而数据透视可以快速抽取有用信息: ? pandas也有透视?...pandas作为编程领域最强大数据分析工具之一,自然也有透视功能。 在pandas中,透视操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据,解决大麻烦。...参数aggfunc对应excel透视值汇总方式,但比excel聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据如下: ?...总结 本文介绍了pandas pivot_table函数使用,其透视表功能基本和excel类似,但pandas聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级用法。

    2.8K40

    对比Excel,学习pandas数据透视

    Excel中做数据透视 ① 选中整个数据源; ② 依次点击“插入”—“数据透视” ③ 选择在Excel中哪个位置,插入数据透视 ④ 然后根据实际需求,从不同维度展示结果 ⑤ 结果如下 pandas...用pivot_table()做数据透视 1)语法格式 pd.pivot_table(data,index=None,columns=None, values=None,aggfunc...参数说明: data 相当于Excel中"选中数据源"; index 相当于上述"数据透视表字段"中行; columns 相当于上述"数据透视表字段"中列; values 相当于上述"数据透视表字段...案例说明 1)求出不同品牌下,每个月份销售数量之和 ① 在Excel中操作结果如下 ② 在pandas操作如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\...销售数量之和”与“货号计数” ① 在Excel中操作结果如下 ② 在pandas操作如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx

    1.6K20

    对比Excel,学习pandas数据透视

    Excel中做数据透视 ① 选中整个数据源; ② 依次点击“插入”—“数据透视” ③ 选择在Excel中哪个位置,插入数据透视 ④ 然后根据实际需求,从不同维度展示结果 ⑤ 结果如下 pandas...用pivot_table()做数据透视 1)语法格式 pd.pivot_table(data,index=None,columns=None, values=None,aggfunc...参数说明: data 相当于Excel中"选中数据源"; index 相当于上述"数据透视表字段"中行; columns 相当于上述"数据透视表字段"中列; values 相当于上述"数据透视表字段...案例说明 1)求出不同品牌下,每个月份销售数量之和 ① 在Excel中操作结果如下 ② 在pandas操作如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\...销售数量之和”与“货号计数” ① 在Excel中操作结果如下 ② 在pandas操作如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx

    1.7K10

    利用excel与Pandas完成实现数据透视

    数据透视是一种分类汇总数据方法。本文章将会介绍如何用Pandas完成数据透视制作和常用操作。...1,制作数据透视 制作数据透视时候,要确定这几个部分:行字段、列字段、数据区,汇总函数。数据透视结构如图1所示。...图1 数据透视结构 Excel制作数据透视很简单,选中表格数据,并点击工具栏上数据透视”菜单即可,如图2所示。...图2 Excel制作数据透视 Pandas里制作数据透视主要使用pivot_table方法。...图14 对数据透视数据进行分组 用Pandas也可以实现类似的统计,示例代码如下: 代码11-9 对数据透视数据进行分组统计 import pandas as pd import xlwings

    2.2K40

    SQL、Pandas和Spark:如何实现数据透视

    所以,今天本文就围绕数据透视,介绍一下其在SQL、Pandas和Spark中基本操作与使用,这也是沿承这一系列文章之一。 ?...02 Pandas实现数据透视 在三大工具中,Pandas实现数据透视可能是最为简单且又最能支持自定义操作工具。...这里给出Pandas数据透视API介绍: ?...03 Spark实现数据透视 Spark作为分布式数据分析工具,其中spark.sql组件在功能上与Pandas极为相近,在某种程度上个人一直将其视为Pandas在大数据实现。...在Spark中实现数据透视操作也相对容易,只是不如pandas自定义参数来得强大。 首先仍然给出在Spark中构造数据: ?

    2.9K30

    一文搞定pandas透视

    透视在一种功能很强大图表,用户可以从中读取到很多信息。利用excel可以生成简单透视。本文中讲解是如何在pandas制作透视。 读取数据 import pandas as pd import numpy as np ​ df = pd.read_excel("....图形备忘录 查询指定字段值信息 当通过透视生成了数据之后,便被保存在了数据帧中 高级功能 Status排序作用体现 不同属性字段执行不同函数 查看总数据,使用margins=True...解决数据NaN值,使用fill_value参数 4.使用columns参数,指定生成列属性 使用aggfunc参数,指定多个函数 使用index和values两个参数 只使用index参数...建立透视 不严格要求,但是设置了顺序有助于分析,一直保持所想要顺序 使用category数据类型,按照想要查看方式设置顺序 设置数据

    1.3K11

    ​【Python基础】一文看懂 Pandas透视

    一文看懂 Pandas透视 透视在一种功能很强大图表,用户可以从中读取到很多信息。利用excel可以生成简单透视。本文中讲解是如何在pandas制作透视。...读取数据 注:本文原始数据文件,可以在公号「Python数据之道」后台回复 “透视”获取。...df["Status"].cat.set_categories(["won","pending","presented","declined"],inplace=True) # 设置顺序 建立透视...4.使用columns参数,指定生成列属性 ? 5. 解决数据NaN值,使用fill_value参数 ? 6. 查看总数据,使用margins=True ? 7....不同属性字段执行不同函数 ? ? 8. Status排序作用体现 ? 高级功能 当通过透视生成了数据之后,便被保存在了数据帧中 查询指定字段值信息 ?

    1.7K20

    熟练掌握 Pandas 透视数据统计汇总利器

    pivot_table 可以把一个大数据数据,按你指定"分类键"进行重新排列。...你还可以指定用"总和"、"均值"等聚合函数来汇总每个格子数据。 拥有了这张透视,数据就井然有序了。你可以一览无余地观察每个类别、每个地区销售情况,发现潜在规律和异常。...(Region)卖出产品(Product),以及当前产品销售额(Sales),客户质量(Quantity),现在希望对每个地区售卖产品和销售额做一个统计汇总透视。...快速上手系列算上本文是更新了 8 篇,其他文章如下: Python pandas 快速上手之:概念初识 pandas 快速上手系列:自定义 dataframe 读 DataFrame 不只是读...多维度数据透视与总结,透视表功能可以按任意行列索引对数据进行高效切割与聚合,全方位统计各维度关键信息。

    37000

    技术|数据透视Python也可以

    19 2019-01 技术|数据透视Python也可以 对于熟悉Excel小伙伴来说,学习Python时候就按照没个功能在Python中如何实现进行学习就可以啦~ LEARN MORE ?...如果换用一个软件,很显然,这样思路也不会发生任何改变。 接下来就给大家讲一下如何在Python中实现数据透视功能。 ? pivot ?...pd.pivot_table 这就是实现数据透视表功能核心函数。显而易见,这个函数也是基于Pandas。...在使用这个功能之前,需要先import pandas as pd哦~ pivot这个单词本身就已经告诉我们这个函数实现功能类似于数据透视数据透视:data pivot) 需要指定参数也和Excel...我们先回顾一下使用Excel进行数据透视操作过程: 首先,选中希望进行数据透视数据,点击数据透视,指定数据透视位置。 ? ?

    2K20

    传统数据透视之不能——非重复计数PowerPivot轻松解

    小勤:大海,上次你文章《Excel统计无法承受之轻——非重复计数问题PQ解》教我用Power Query直接实现了非重复计数操作,但现在除了非重复计数,还有很多其他数据要统计,能不能直接在数据透视表里实现...大海:传统数据透视表功能很强大,但非常奇怪是——不支持非重复计数!你要用数据透视同时实现其他统计和非重复计数,又不想在原始数据表里增加辅助列的话,得考虑用Power Pivot了。 小勤:啊。...Step-1:将数据添加到数据模型 Step-2:创建数据透视 Step-3:按统计分析需要将不同字段拖拽到相应行、值位置 Step-4:将客户号计数改为“非重复计数“,同时按需要修改字段名称...好像跟传统数据透视操作基本没有差别啊。 大海:是的,其实就是第一步,将数据“添加到数据模型”,其他没有任何差别。 小勤:嗯。...就是添加到数据模型后,创建数据透视模型里来,就直接支持非重复计数了? 大海:对啊。

    2.8K30

    5分钟了解Pandas透视

    Pandas 库是用于数据分析流行 Python 包。Pandas 中处理数据集时,结构将是二维,由行和列组成,也称为dataframe。...然而,数据分析一个重要部分是对这些数据进行分组、汇总、聚合和计算统计过程。 Pandas 数据透视提供了一个强大工具来使用 python 执行这些分析技术。...如果你是excel用户,那么可能已经熟悉数据透视概念。Pandas 数据透视工作方式与 Excel 等电子表格工具中数据透视非常相似。...("autos", version=1, as_frame=True, return_X_y=True) data = X data['target'] = y 透视剖析 Pandas 数据透视具有三个主要元素...它们今天仍在广泛使用,因为它们是分析数据强大工具。Pandas 数据透视将这个工具从电子表格中带到了 python 用户手中。 本指南简要介绍了 Pandas数据透视表工具使用。

    1.9K50

    ​一文看懂 Pandas透视

    一文看懂 Pandas透视 透视在一种功能很强大图表,用户可以从中读取到很多信息。利用excel可以生成简单透视。本文中讲解是如何在pandas制作透视。...读取数据 注:本文原始数据文件,可以在早起Python后台回复 “透视”获取。...设置数据 使用 category数据类型,按照想要查看方式设置顺序 不严格要求,但是设置了顺序有助于分析,一直保持所想要顺序 df["Status"] = df["Status"].astype(...4.使用columns参数,指定生成列属性 ? 5. 解决数据NaN值,使用fill_value参数 ? 6. 查看总数据,使用margins=True ? 7....不同属性字段执行不同函数 ? ? 8. Status排序作用体现 ? 高级功能 当通过透视生成了数据之后,便被保存在了数据帧中 查询指定字段值信息 ?

    1.9K30

    一文看懂pandas透视

    一文看懂pandas透视 读取数据 import pandas as pd import numpy as np df = pd.read_excel("....设置数据 使用category数据类型,按照想要查看方式设置顺序 不严格要求,但是设置了顺序有助于分析,一直保持所想要顺序 df["Status"] = df["Status"].astype...") df["Status"].cat.set_categories(["won","pending","presented","declined"],inplace=True) # 设置顺序 建立透视...4.使用columns参数,指定生成列属性 ? 解决数据NaN值,使用fill_value参数 ? 查看总数据,使用margins=True ? 不同属性字段执行不同函数 ? ?...Status排序作用体现 ? 高级功能 当通过透视生成了数据之后,便被保存在了数据帧中 查询指定字段值信息 ? 图形备忘录 ?

    81730

    Python数据透视透视分析:深入探索数据关系

    数据透视是一种用于进行数据分析和探索数据关系强大工具。它能够将大量数据按照不同维度进行聚合,并展示出数据之间关系,帮助我们更好地理解数据背后模式和趋势。...在Python中,有多个库可以用来创建和操作数据透视,其中最常用pandas库。 下面我将介绍如何使用Pythonpandas库来实现数据透视透视分析。...df = pd.read_csv('data.csv') # 根据实际情况修改文件路径和格式 3、创建数据透视:使用pandaspivot_table()函数可以轻松创建数据透视。...下面是一些常用操作: 筛选数据:可以基于数据透视特定值或条件筛选出我们感兴趣数据。...import matplotlib.pyplot as plt pivot_table.plot(kind='bar') plt.show() 通过以上步骤,我们可以利用Python数据透视透视分析

    20210

    利用 Python 生成数据透视

    简介 利用 read_excel() usecols 参数来指定某一列,以方便排除不必要干扰列 养成数据加载以后,使用 head() 进行预览习惯 养成使用 shape() 及 info()...需要掌握主要有两个方法: DataFrame.insert() 方法,用来增加对应列 DataFrame.pivot_table() 产生透视图,展示重要数据 具体方法 DataFrame.insert...mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False) values : 要进行透视展示数据...默认为 all ,或者自定义一个名称 observed bool , True 显示分类中数据,False 显示所有数据,默认为 False 示例代码 import pandas as pd from...# 普通索引方式插入 # data4["loan divide amount"] = data4["load amount"]*data4["deivide percent"]/10000 # 增加数据透视

    1.9K10
    领券