首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python开发之Pandas的使用

一、简介 Pandas 是 Python 中的数据操纵和分析软件包,它是基于Numpy去开发的,所以Pandas的数据处理速度也很快,而且Numpy中的有些函数在Pandas中也能使用,方法也类似。...Pandas 为 Python 带来了两个新的数据结构,即 Pandas Series(可类比于表格中的某一列)和 Pandas DataFrame(可类比于表格)。...6、缺失值(NaN)处理 查找NaN 可以使用isnull()和notnull()函数来查看数据集中是否存在缺失数据,在该函数后面添加sum()函数来对缺失数量进行统计。...inplace:是否替换原数据,默认为False limit:接受int类型的输入,可以限定替换前多少个NaN 五、数据分析流程及Pandas应用 1、打开文件 python...[row_index_1:row_index_2] #提取某列 df['col_name'] #提取某几列 df[['col_name_1','col_name_2']] #提取某行某列的值 df.iloc

2.9K10

【数据处理包Pandas】数据载入与预处理

中缺失值的表示 Pandas 表示缺失值的一种方法是使用NaN(Not a Number),它是一个特殊的浮点数;另一种是使用 Python 中的None,Pandas 会自动把None转变成NaN。...2 在缺失值的处理方法中,删除缺失值是常用的方法之一。...thresh 阈值设定,当行列中非空值的数量少于给定的值就将该行丢弃 subset 表示进行去重的列/行,如:subset=[ ’a’ ,’d’],即丢弃子列 a d 中含有缺失值的行 inplace...duplicates方法返回一个布尔值的 series ,反映每一行是否与之前的行重复。...默认为 ‘first’,表示保留第一个出现的重复值;‘last’ 表示保留最后一个出现的重复值;False 表示删除所有重复值。 inplace:可选参数,指定是否在原地修改 DataFrame。

11810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python数据分析——数据预处理

    dropna()方法用于删除含有缺失值的行。 【例】当某行或某列值都为NaN时,才删除整行或整列。这种情况该如何处理? 关键技术: dropna()方法的how参数。...本节主要从重复值的发现和处理两方面进行介绍。 本节各案例所用到的df数据如下,在各案例的代码展示中将不再重复这部分内容。 【例】请使用Python检查df数据中的重复值。...利用duplicated()方法检测冗余的行或列,默认是判断全部列中的值是否全部重复,并返回布尔类型的结果。对于完全没有重复的行,返回值为False。...在该案例中,首先使用pandas库中的query方法查询数据中是否有异常值。然后通过boxplot方法检测异常值。代码及运行结果如下: 下面以箱形图的方法来进行异常值检测。...),默认为False inplace : 是否在原DataFrame上修改,默认为False verify_integrity : 是否检查索引有无重复,默认为False 在该案例中,除了可以用set_index

    94610

    Python 合并 Excel 表格

    所以,工作量大时,编程代码来实现上述操作的优势就凸显了:修改代码中几个参数,设置几个循环遍历,等几秒钟便可轻松搞定。 下面看 Python 实现的思路和步骤,还是要用之前提到过的 pandas 库。...注意 concat 方法中有个参数是 axis,默认为 0 表示按行即纵向合并,此处我们没有做设置使用的是默认值: ?...因为需求要定位到特定某列,故通过 iloc 方法实现通过索引定位并提取某行某列数据,首先是 iloc[:,2] 获取 表 C 中的第三列(此处 ":" 代表所有行;2 代表由0开始的列索引值,即第三列)...以及 iloc[:,[0,1]] 获取 表 D 中的第一、二列(此处 ":" 代表所有行;[0,1] 代表由0开始的列索引值,即第一列和第二列): ?...批量在不同 PDF 中提取特定位置的数据插入到对应 Word 文档中 Python 办公小助手:读取 PDF 中表格并重命名 摘要:批量读取 PDF 中特定数据,并以读取到的数据重命名该 PDF 文件

    3.6K10

    Python中查询缺失值的4种方法

    人生苦短,快学Python! 在我们日常接触到的Python中,狭义的缺失值一般指DataFrame中的NaN。广义的话,可以分为三种。...缺失值:在Pandas中的缺失值有三种:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错) 空值:空值在Pandas中指的是空字符串""; 最后一类是导入的...今天聊聊Python中查询缺失值的4种方法。 缺失值 NaN ① 在Pandas中查询缺失值,最常用的⽅法就是isnull(),返回True表示此处为缺失值。...在交互式环境中输入如下命令: df[df["B列"] == ""] 输出: 此外,也可以利用空值与正常值的区别来区分两者,比如isnumeric()方法检测字符串是否只由数字组成。...= 0)] 输出: 如上所示,我自定义了匿名函数lambda,作用是在文本列的每一行中查找以下文本值:“NA”、“*”、“?” 、“!” 、“#”、“-”,并检查它找到的列表的长度。

    4.3K10

    用Python实现透视表的value_sum和countdistinct功能

    在pandas库中实现Excel的数据透视表效果通常用的是df['a'].value_counts()这个函数,表示统计数据框(DataFrame) df的列a各个元素的出现次数;例如对于一个数据表如pd.DataFrame...Excel数据透视表与Python实现对比 就是对表df中的a列各个值出现的次数进行统计。...Pandas中的数据透视表各功能 用过Excel透视表功能的话我们知道,出了统计出现次数之外,还可以选择计算某行的求和、最大最小值、平均值等(数据透视表对于数值类型的列默认选求和,文本类型默认选计数),...还是拿表df来说,excel的数据透视表可以计算a列的A、B、C三个元素对应的c列的求和(sum),但是pandas库并没有value_sum()这样的函数,pandas的sum函数是对整列求和的,例如...True则将计数变成频率,例如df的a列中共有6行,而C出现了3次,于是C对应的值就是0.5;bin参数可以设置分箱;dropna可以设置是否考虑缺失值,默认是不考虑(可以结合normalize影响频率

    4.3K21

    用户画像准确性评测初探 ——拨开python大数据分析的神秘面纱

    AI团队率先做的尝试是在一些特定场景下猜测用户意图,进行意图相关推荐,如住酒店用户,地铁上用户等,这是算法可以做的事情,那测试在这个过程中可以做些什么呢?算法验证相对滞后,有什么可以先行的呢?...因为问卷没有收集imei数据,而lable标签是根据imei进行统计的,因此这里需要多做一层merge处理,以使问卷可以补足缺失的imei信息。 是否可优化?是否存在风险?...前期设计没有考虑清楚key值的设计造成了这个隐患,同时还增加了分析的工作量。 (2)  蓝框:系统lable数据处理。 为什么要做?...,不必一行行循环读取…… 如果您有上述需求,不妨继续往下看。...5、pandas的数据处理 (1)数据检索处理。 (a)查询首尾; ? (b)查询某行,列; 注意:iloc、loc、ix(尽量用ix,避免搞不清楚index和行号)。 ?

    4.6K40

    3招降服Python数据中的None值

    Python 数据分析包 Pandas 提供了一些便利的函数,可以帮助我们快速按照设想处理、解决空值。 空值处理的第一招:快速确认数据集中是不是存在空值。...说到空值,在 NumPy 中定义为: np.nan,Python 中定义为 None,所以大家注意这种表达方式。...这里面有一个坑,就是 Pandas 对象某列或某行,直接拿 np.nan , None 判断元素是否为空,发现返回的都是False。注意:这样做是不可取的!...从上一个有效数据传播到下一个有效数据行。此外,还有一个限制连续空值行的数量的关键字 limit....里面有两个关键参数:axis, how, 例如组合:axis = 0,how =\'any\',表示某行只要某个元素为空值,就丢弃。 以上就是 Pandas 中,空值处理的基本思路。

    1.2K30

    pandas的类SQL操作

    作者:livan 来源:数据python与算法 会写python不难,写好却需要下一番功夫,上篇文章写了for循环的简单优化方法,原本想一鼓作气,梳理一下for循环优化的高级方法,但是梳理过程中发现...for循环优化需要比较多的python基础知识,如果了解不透彻很难达到优化的效果,因此,笔者想用几个短篇先介绍一下python的常用包和方法,方便后续优化使用。...WHERE条件在python中应用非常多,所以各个包中都会涉及对应的内容,在numpy中也有对应的思路: import numpy as np A = np.array([1, 7, 4, 9, 2,...多DataFrame的查询主要是解决SQL中join和concat的问题,python中主要使用merge和concat来实现对应的功能具体写法如下: Merge的用法:merge主要是用作按行拼接,类似于...几种常用的用法有: 单列分组:然后按照另一列数据计算相应值: print(data1.groupby('a')['b'].mean()) 多列分组:然后按照另一列数据计算相应值: Agg的作用即为封装对应的函数

    1.9K21

    介绍3个Pandas的宝藏函数

    介绍3个Pandas的宝藏函数 大家好,我是Peter呀~ 在利用Pandas进行数据处理的时候,我们经常需要对某行或者某列的数据、甚至是全部的元素执行某个相同的操作。...,然后得到映射的值 apply apply方法在使用的时候和map是比较类似的,只不过apply更全、更强大,它能够传入更为复杂的函数,通过例子来讲解下。...方法中我们可以传入各种不同的函数: 自定义函数 python匿名函数 python自带函数 pandas自带函数 1、自定义函数 我们传入自定义函数:上面的改变性别表示方法的函数 [008i3skNgy1gtgkn5qu8aj613q0fggo002...008i3skNgy1gtgl71j3vgj60uy0ommz002.jpg] 总结 对数据的行、列进行同一个操作十分常见,本文结合各种例子进行了讲解: map:能够满足绝大部分Series类型数据的同一个操作...apply:map的功能都能够实现,比较灵活,能够传入各种复杂或者自带的函数进行数据处理 applymap:对DataFrame中的数据执行同一个操作,使用较少

    62520

    Python与Excel协同应用初学者指南

    电子表格数据的最佳实践 在开始用Python加载、读取和分析Excel数据之前,最好查看示例数据,并了解以下几点是否与计划使用的文件一致: 电子表格的第一行通常是为标题保留的,标题描述了每列数据所代表的内容...可以在下面看到它的工作原理: 图15 已经为在特定列中具有值的行检索了值,但是如果要打印文件的行而不只是关注一列,需要做什么? 当然,可以使用另一个for循环。...,即标题(cols)和行(txt); 4.接下来,有一个for循环,它将迭代数据并将所有值填充到文件中:对于从0到4的每个元素,都要逐行填充值;指定一个row元素,该元素在每次循环增量时都会转到下一行;...另一个for循环,每行遍历工作表中的所有列;为该行中的每一列填写一个值。...5.用值填充每行的所有列后,将转到下一行,直到剩下零行。

    17.4K20

    超强Python『向量化』数据处理提速攻略

    如果在数据上使用for循环,则完成所需的时间将与数据的大小成比例。但是还有另一种方法可以在很短的时间内得到相同的结果,那就是向量化。...这是一个非常基本的条件逻辑,我们需要为lead status创建一个新列。 我们使用Pandas的优化循环函数apply(),但它对我们来说太慢了。...将整个Series作为参数传递到函数中,而不是对每一行。 但没有成功。if语句试图确定Series作为一个整体的真实性,而不是比较Series中的每个元素,所以这是错误的。...使用.apply执行基本的Python是更快的选择。 一般来说,我们还建议你使用str方法来避免循环,但是如果你的速度变慢了,这会让你很痛苦,试试循环是否能帮你节省一些时间。...向量化所需要的所有函数都是在同一行上比较的值,这可以使用pandas.shift()实现! 确保你的数据正确排序,否则你的结果就没有意义! 很慢!

    6.8K41

    针对SAS用户:Python数据分析库pandas

    这有点类似于在SAS日志中使用PUT来检查变量值。 下面显示了size、shape和ndim属性(分别对应于,单元格个数、行/列、维数)。 ?...检查 pandas有用于检查数据值的方法。DataFrame的.head()方法默认显示前5行。.tail()方法默认显示最后5行。行计数值可以是任意整数值,如: ?...用于检测缺失值的另一种方法是通过对链接属性.isnull().any()使用axis=1参数逐列进行搜索。 ? ? ? ?...显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。....在删除缺失行之前,计算在事故DataFrame中丢失的记录部分,创建于上面的df。 ? DataFrame中的24个记录将被删除。

    12.1K20

    python数据分析——数据预处理

    describe() 在Python中,没有名为describe()的内置函数。...在做数据分析时,常常需要了解数据元素的特征,describe()函数可以用于描述数据统计量特征 二、缺失值处理 缺失值检查 isnull() 在 pandas 库中,isnull() 函数用于检查数据是否为空值...# 至少保留2个非缺失值的行 df.dropna(thresh=2) # 只在'A'列和'B'列中查找并删除缺失值 df.dropna(subset=['A', 'B']) 示例一 【例】当某行或某列值都为...利用duplicated()方法检测冗余的行或列,默认是判断全部列中的值是否全部重复,并返回布尔类型的结果。对于完全没有重复的行,返回值为False。...对于有重复值的行,第一次出现重复的那一行返回False,其余的返回True。本案例的代码及运行结果如下: 重复值的处理 在Python中,可以使用pandas库来处理数据分析中的重复值。

    8510

    Python入门之数据处理——12种有用的Pandas技巧

    ◆ ◆ ◆ 我们开始吧 从导入模块和加载数据集到Python环境这一步开始: ? # 1–布尔索引 如果你想根据另一列的条件来筛选某一列的值,你会怎么做?...在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。举个例子,它可以用来找到任一行或者列的缺失值。 ? ?...现在,我们可以填补缺失值并用# 2中提到的方法来检查。 #填补缺失值并再次检查缺失值以确认 ? ? # 4–透视表 Pandas可以用来创建MS Excel风格的透视表。...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...加载这个文件后,我们可以在每一行上进行迭代,以列类型指派数据类型给定义在“type(特征)”列的变量名。 ? ? 现在的信用记录列被修改为“object”类型,这在Pandas中表示名义变量。

    5K50

    教程|Python Web页面抓取:循序渐进

    输出数据 Python页面抓取需要对代码进行不断的检查 输出1.jpg 即使在运行程序时没有出现语法或运行错误,也仍然可能存在语义错误。...应该检查实际上是否有分配给正确对象的数据,并正确地移动到数组。 检查在前面步骤中采集数据是否正确的最简单方法之一是“打印”。...数组有许多不同的值,通常使用简单的循环将每个条目分隔到输出中的单独一行: 输出2.png 在这一点上,“print”和“for”都是可行的。启动循环只是为了快速测试和调试。...pandas可以创建多列,但目前没有足够的列表来利用这些参数。 第二条语句将变量“df”的数据移动到特定的文件类型(在本例中为“ csv”)。第一个参数为即将创建的文件和扩展名分配名称。...为了收集有意义的信息并从中得出结论,至少需要两个数据点。 当然,还有一些稍有不同的方法。因为从同一类中获取数据仅意味着附加到另一个列表,所以应尝试从另一类中提取数据,但同时要维持表的结构。

    9.2K50

    Pandas图鉴(二):Series 和 Index

    Pandas没有像关系型数据库那样的 "唯一约束"(该功能[4]仍在试验中),但它有一些函数来检查索引中的值是否唯一,并以各种方式删除重复值。 有时,但一索引不足以唯一地识别某行。...在Pandas中,它被称为MultiIndex(第4部分),索引内的每一列都被称为level。 索引的另一个重要特性是它是不可改变的。与DataFrame中的普通列相比,你不能就地修改它。...索引有一个名字(在MultiIndex的情况下,每一层都有一个名字)。而这个名字在Pandas中没有被充分使用。...df.merge--可以用名字指定要合并的列,不管这个列是否属于索引。 按值查找元素 考虑以下Series对象: 索引提供了一种快速而方便的方法,可以通过标签找到一个值。但是,通过值来寻找标签呢?...Pandas有df.insert方法,但它只能将列(而不是行)插入到数据框架中(而且对序列根本不起作用)。

    33820

    新年Flag:搞定Python中的“功夫熊猫”,做最高效的数据科学家

    Pandas就像是Python中的Excel:它的基本数据结构是表格(在pandas中叫“DataFrame”),可以对数据进行各种操作和变换。当然,它还能做很多其他的事。...如果你没有指定index=None,程序就会在文件中新增一个索引列,这个列在所有列的最前面,值为0,1,2,3…直到最后一行。...检查数据 data.shape 验证(rows, columns)信息是否与数据的行、列数相符3 data.describe() 计算一些基本的统计量,如数据计数、均值、标准差、分位数等。...pd.plotting.scatter_matrix(data,figsize=(12,8)) 散布矩阵(scatter matrices)的示例。它在同一个图中绘制两个列的值的所有组合。...row['column_2] .iterrows()函数同时获取2个变量并实现循环:分别是行的索引和行的对象(也就是上面代码中的i和row)。

    1.1K20

    别找了,这是 Pandas 最详细教程了

    pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...如果没有写 index=None,你会多出一个第一列,内容是 1,2,3,...,一直到最后一行。...更新数据 data.loc[8, column_1 ] = english 将第八行名为 column_1 的列替换为「english」 在一行代码中改变多列的值 好了,现在你可以做一些在 excel...散点矩阵的例子。它在同一幅图中画出了两列的所有组合。...() 使用两个变量一起循环:行索引和行的数据 (上面的 i 和 row) 总而言之,pandas 是 python 成为出色的编程语言的原因之一 我本可以展示更多有趣的 pandas 功能,但是已经写出来的这些足以让人理解为何数据科学家离不开

    2K20

    Pandas数据处理2、DataFrame的drop函数具体参数使用详情

    ,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了...,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多AI大佬的文章中发现都有这个Pandas文章,每个人的写法都不同,但是都是适合自己理解的方案,我是用于教学的,故而我相信我的文章更适合新晋的程序员们学习...,如果设置为0,那么则删除行,如果为1,则删除列。...index:index是按照行删除时传入的参数,需要传入的是一个列表,包含待删除行的索引编号。 columns:columns是按照列删除时的参数,同样传入的是一个列表,包含需要删除列的名称。...,这个是指定删除,就是人为确认某行或某列无用的时候进行具体的删除操作。

    1.4K30
    领券