数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值。 一、什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值。 1....Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull...从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。...replace(to_replace=None, value=None): 替换Series或DataFrame中的指定值,一般传入两个参数,to_replace为被替换的值,value为替换后的值。...假如空值在第一行或第一列,以及空值前面的值全都是空值,则无法获取到可用的填充值,填充后依然保持空值。
df.replace('', np.NaN) missingno 库 Missingno 是一个优秀且简单易用的 Python 库,它提供了一系列可视化,以了解数据帧中缺失数据的存在和分布。...右上角表示数据帧中的最大行数。 在绘图的顶部,有一系列数字表示该列中非空值的总数。 在这个例子中,我们可以看到许多列(DTS、DCAL和RSHA)有大量的缺失值。...接近正1的值表示一列中存在空值与另一列中存在空值相关。 接近负1的值表示一列中存在空值与另一列中存在空值是反相关的。换句话说,当一列中存在空值时,另一列中存在数据值,反之亦然。...接近0的值表示一列中的空值与另一列中的空值之间几乎没有关系。 有许多值显示为列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。
any 表示一行/列有任意元素为空时即丢弃,all 一行/列所有值都为空时才丢弃。 subset 参数表示删除时只考虑的索引或列名。...thresh参数的类型为整数,它的作用是,比如 thresh=3,会在一行/列中至少有 3 个非空值时将其保留。...此外,有的时候会出现空白字符串,这些也可以认为是缺失值。 对于上面的这种情况,我们可以使用 replace 方法来替换缺失值。...,还可以使用正则表达式来替换,如:将空白字符串替换成空值。...本文作者为无邪 AI派 | 禹都一只猫整理,转载请注明。 pandas python
pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...32 33 NaN """ dropna 方法可以选择删除 # 要删除一列或一行中全部都是nan 值的那一行或列,可以通过下面的方式 print("del cols is all NaN\n"...fillna() fillna 方法可以将df 中的nan 值按需求填充成某值 # 将NaN值用0填充 df.fillna(0,inplace = True) # inplace 指明在原对象上直接修改...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...pandas 最基本的时间序列类型就是以时间戳(TimeStamp)为 index 元素的 Series 类型。Python和Pandas里提供大量的内建工具、模块可以用来创建时间序列类型的数据。
幸运的是,pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以让你轻松地将数据规变为想要的格式。...要将其替换为pandas能够理解的NA值,我们可以利用replace来产生一个新的Series(除非传入inplace=True): In [62]: data.replace(-999, np.nan...2.0 3 NaN 4 NaN 5 3.0 dtype: float64 要让每个值有不同的替换值,可以传递一个替换列表: In [64]: data.replace([-999...如果DataFrame的某一列中含有k个不同的值,则可以派生出一个k列矩阵或DataFrame(其值全为1和0)。...用于将指定模式替换为另一个模式。
, dtype: object replace方法还支持正则表达式,例如将所有开头为 S 的城市替换为空字符串。...再来看下分割操作,例如根据空字符串来分割某一列。...DataFrame,每个组只有一列。...() 在每个元素上调用re.search,为每个元素返回一行DataFrame,为每个正则表达式捕获组返回一列 extractall() 在每个元素上调用re.findall,为每个匹配返回一行DataFrame...pandas python
基本类型是对象(字典)、数组(列表)、字符串、数字、布尔值和空值。对象中的所有键都必须是字符串。有几个 Python 库可用于读取和写入 JSON 数据。...pandas 有一个read_sql函数,可以让您轻松地从通用的 SQLAlchemy 连接中读取数据。...如果 DataFrame 中的一列有k个不同的值,您将得到一个包含所有 1 和 0 的k列的矩阵或 DataFrame。...另一个重要的扩展类型是Categorical,我们将在 Categorical Data 中更详细地讨论。截至本文撰写时,可用的扩展类型的相对完整列表在表 7.3 中。...pandas 通过使您能够简洁地在整个数据数组上应用字符串和正则表达式,另外处理了缺失数据的烦恼。 Python 内置字符串对象方法 在许多字符串处理和脚本应用程序中,内置字符串方法已经足够。
本文示例中,主要用了几个知识点: 通过 pd.DataFrame 新建数据框。 通过 df.iloc[] 来选择特定的列或对象。 使用Pandas的 isnull() 判断值是否为空。...在示例中, nan_result_pd4、nan_result_pd5、nan_result_pd6 分别使用0、不同的值、平均数替换缺失值。...更有效的是,如果数据中的缺失值太多而无法通过列表形式穷举时,replace 还支持正则表达式的写法。 当列中的数据全部为空值时,任何替换方法都将失效,任何基于中位数、众数和均值的策略都将失效。...的选择功能,即只保留在 df_zscore 中异常列(col1)为 False 的列。...,我们在一列中直接给4个对象赋值,也可以拆分为4行分别赋值。
选择 在训练机器学习模型时,我们需要将列中的值放入X和y变量中。...有几个有用的函数用于检测、删除和替换panda DataFrame中的空值。...要检查panda DataFrame中的空值,我们使用isnull()或notnull()方法。方法返回布尔值的数据名,对于NaN值为真。...例如,我们可能想用0替换' NaN '。 replace_null = df.fillna(0) # Replace all null values with 0 ? 或者用平均值替换NaN。...方法可用于替换DataFrame中的值 one = df.replace(100,'A') # Replace all values equal to 1 with 'one' ?
下表比较在SAS中发现的pandas组件。 ? 第6章,理解索引中详细地介绍DataFrame和Series索引。...处理缺失数据 在分析数据之前,一项常见的任务是处理缺失数据。Pandas使用两种设计来表示缺失数据,NaN(非数值)和Python None对象。...为了减轻上述错误的发生,在下面的数组例子中使用np.nan(缺失数据指示符)。也要注意Python如何为数组选择浮点数(或向上转型)。 ? 并不是所有使用NaN的算数运算的结果是NaN。 ?...thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。....fillna()方法返回替换空值的Series或DataFrame。下面的示例将所有NaN替换为零。 ? ?
python pandas import pandas as pd import numpy as np pd.set_option('display.height', 1000) pd.set_option...=4)) #移除空值个数为4的行 print(df.fillna(1)) # 空值部分用1替换 # print(df.fillna(df.mean())) # 空值部分用平均数替换 # s...= df['c'] print(s.astype(float)) # 将数组的格式转换为浮点数 # print(s.replace(5.0,'one')) # 将数组中的所有5替换为..."one" # print(s.replace([5,9],["five",'nine'])) # 将数组中的所有5/9换成"five","nine" # df = pd.DataFrame(np.random.rand...print(df.corr()) # 得出每一列和其他列的相关系数 print(df.count()) # 得出每一列中的非空值个数 print(
替换空值 另一种处理空单元格的方法是插入一个新的值。这样,你就不必因为一些空单元格而删除整个行。...fillna()方法允许我们用一个值替换空单元格: #Replace NULL values with the number 130 import pandas as pd df = pd.read_csv...要想只替换一列的空值,请指定DataFrame的列名。...要解决这个问题,你有两个选择:删除这些行,或者将列中的所有单元格转换成相同的格式。 转换为正确的格式 在我们的数据框架中,有两个单元格的格式是错误的。...在我们的例子中,这很可能是一个打字错误,数值应该是 "45 "而不是 "450",我们可以在第7行插入 "45": df.loc[7, 'Duration'] = 45 对于小的数据集,你也许可以一个一个地替换错误的数据
Pandas 是基于 NumPy 的一种数据处理工具,该工具为了解决数据分析任务而创建。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。...Python中的Numpy基础20问 参考资料 | 100-pandas-puzzles - GitHub | Pandas 百题大冲关 基本操作 导入 Pandas 库并简写为 pd,并输出版本号 import...snake替换为python df['animal'] = df['animal'].replace('snake', 'python') df 对每种animal的每种不同数量visits,计算平均...print(df1) 一个有5列的DataFrame,求哪一列的和最小 df = pd.DataFrame(np.random.random(size=(5, 5)), columns=list('...数据被以列表的形式录入,但是我们希望每个数字被录入成单独一列,delay_1, delay_2, ...没有的用NAN替代。
在本节中,我们将讨论缺失数据的一些一般注意事项,讨论 Pandas 如何选择来表示它,并演示一些处理 Python 中的缺失数据的 Pandas 内置工具。...考虑到这些约束,Pandas 选择使用标记来丢失数据,并进一步选择使用两个已经存在的 Python 空值:特殊浮点值NaN和 Python None对象。...我们将要看到,这种选择有一些副作用,但实际上在大多数相关情况下,最终都是很好的妥协。...空值上的操作 正如我们所看到的,Pandas 将None和NaN视为基本可互换的,用于指示缺失值或空值。为了促进这个惯例,有几种有用的方法可用于检测,删除和替换 Pandas 数据结构中的空值。...你也可以指定how ='all',它只会丢弃全部为空值的行/列: df[3] = np.nan df 0 1 2 3 0 1.0 NaN 2 NaN 1 2.0 3.0 5 NaN 2 NaN 4.0
10 11 # 和numpy不同的是在第一行和第一列的地方多了索引。...# 以下我们认为attr3中有很多数据,字段还是和上面的一样 # 取前50行数据 attr3[:50] # 取前20行的name字段 attr3[:20]['name'] # 单独取某一列的数据 attr3...# 判断是否为NaN pd.isbull(attr4) # 还有一个pd.notbull(attr4) 刚好相反 # 取值不为空的name列 attr4[pdnotnull(attr4['name'])...] # 删除存在NaN的行 attr4.deopna(axis=0) # 列就是axis = 1 # 想删除某一列全部为NaN的行 attr4.deopna(axis=0,how='all') # 只要有一个...()) # 赋值为NaN值 att4['age'][0] = np.nan # 赋值为0的数据为NaN attr4[attr4==0] = np.nan nan是不会参与平均值等计算的,0会参与计算。
Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多...DataFrame.replace([to_replace, value, …]) #值在“to_replace”替换为“value”。...) 有2个nan就会删除行 subset属性值 我这里清除的是[name,age]两列只要有NaN的值就会删除行 import pandas as pd import numpy as np df...0或'index',表示按行删除;1或'columns',表示按列删除。 inplace:是否原地替换。布尔值,默认为False。...如果method未被指定, 在该axis下,最多填充前 limit 个空值(不论空值连续区间是否间断) downcast:dict, default is None,字典中的项为,为类型向下转换规则。
此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index...df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行 df.dropna(thresh=3)# 每行至少3个非空值才保留 缺失值填充fillna() df.fillna(0)...df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5 df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN 值替换replace(...) # 将df的A列中 -999 全部替换成空值 df['A'].replace(-999, np.nan) #-999和1000 均替换成空值 obj.replace([-999,1000], np.nan...) # -999替换成空值,1000替换成0 obj.replace([-999,1000], [np.nan, 0]) # 同上,写法不同,更清晰 obj.replace({-999:np.nan,
yes, no替换为布尔值True, False df['priority'] = df['priority'].map({'yes': True, 'no': False}) df 将animal列中的...snake替换为python df['animal'] = df['animal'].replace('snake', 'python') df 对每种animal的每种不同数量visits,计算平均...print(df1) 一个有5列的DataFrame,求哪一列的和最小 df = pd.DataFrame(np.random.random(size=(5, 5)), columns=list('...print(df1) 给定DataFrame,有列A, B,A的值在1-100(含),对A列每10步长,求对应的B的和 df = pd.DataFrame({'A': [1,2,11,11,33,34,35,40,79,99...数据被以列表的形式录入,但是我们希望每个数字被录入成单独一列,delay_1, delay_2, ...没有的用NAN替代。
注意:虽然本文是"Python替代Excel Vba"系列,但希望各位读者明白,工具都是各有所长,选择适合的工具,才是最好的。 ---- 案例 这次的数据是一个教师课程表。....replace(['/','nan'],np.nan),把读取进来的有些无效值替换为 nan,这是为了后续操作方便。...---- ---- 我们来看看数据: 注意看左上角有3个 nan ,是因为表格的标题行前3列是空的。 由于前2列有合并单元格,出现了很多 nan。 此外注意看第3列,把课时序号显示成小数。...合并单元格很多时候就是第一个有值,其他为空,ffill 填充方式刚好适合这样的情况。 ---- 现在数据美如画了。...此时,由于把唯一的列索引移走了,df 已经没有任何列索引! .reset_index(-1) , 把最后的行索引移走,并成为单独的一列。 到此,df 又重新有了一层列索引。
通常将其用于将DataFrame对象的索引的内容移到一个或多个列中。 以下代码将sp500索引中的符号移到一列中,并将索引替换为默认的整数索引。...更具体地说,Pandas 处理NaN值的方式如下: 数据求和将NaN视为 0 如果所有值均为NaN,则结果为NaN 像.cumsum()和.cumprod()这样的方法会忽略NaN值,但会将它们保留在结果数组中...另一种常见情况是用列的平均值填充一列中的所有NaN值: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RHhiiFIC-1681365561398)(https://gitcode.net...甚至更笼统地说,.fillna()方法本身可以被认为是.replace()方法提供的更通用替代品的专业化。 通过能够用另一个值替换任何值(不仅是NaN),此方法提供了更大的灵活性。...这是通过将 Python 字典传递给.replace()方法来执行的。 在此字典中,键表示要进行替换的列的名称,而字典的值指定要进行替换的位置。 方法的第二个参数是用于替换匹配项的值。
领取专属 10元无门槛券
手把手带您无忧上云