首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python:在3D数组中广播来自argmin的2D索引数组

Python中的广播(broadcasting)是指在进行数组运算时,对不同形状的数组进行自动的扩展和对齐,使得它们可以进行元素级别的操作。广播可以简化代码,提高运算效率。

在给定一个3D数组和一个2D索引数组的情况下,我们可以使用广播来实现从argmin函数得到的2D索引数组在3D数组中的广播。

首先,让我们来解释一下问题中的一些概念:

  • 3D数组:指的是一个具有三个维度的数组。在Python中,可以使用NumPy库来创建和操作多维数组。3D数组可以表示为一个由多个2D数组组成的集合,每个2D数组称为一个平面。
  • 2D索引数组:指的是一个具有两个维度的数组,其中每个元素是一个索引值。索引值可以用来访问另一个数组中的元素。

现在,让我们来解决这个问题。假设我们有一个名为arr_3d的3D数组和一个名为index_2d的2D索引数组。我们想要在arr_3d中找到对应于index_2d中每个索引的元素。

代码语言:txt
复制
import numpy as np

# 创建一个3D数组
arr_3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

# 创建一个2D索引数组
index_2d = np.array([[0, 1], [1, 0]])

# 使用广播来实现索引的广播
result = arr_3d[np.arange(arr_3d.shape[0])[:, np.newaxis], index_2d]

print(result)

输出结果为:

代码语言:txt
复制
[[[1 2 3]
  [10 11 12]]

 [[7 8 9]
  [4 5 6]]]

在上述代码中,我们使用了NumPy库来创建和操作数组。首先,我们使用np.arange(arr_3d.shape[0])[:, np.newaxis]创建了一个形状为(2, 1)的数组,其中包含了arr_3d的第一个维度的索引值。然后,我们使用这个数组和index_2d进行索引操作,得到了我们想要的结果。

这种广播的方法可以应用于各种情况,例如在图像处理、机器学习、科学计算等领域中。如果你想了解更多关于广播的知识,可以参考NumPy的官方文档:NumPy Broadcasting

腾讯云提供了多个与Python开发和云计算相关的产品和服务,例如云服务器、云数据库、人工智能平台等。你可以访问腾讯云的官方网站来了解更多信息:腾讯云

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

在Python机器学习中如何索引、切片和重塑NumPy数组

机器学习中的数据被表示为数组。 在Python中,数据几乎被普遍表示为NumPy数组。 如果你是Python的新手,在访问数据时你可能会被一些python专有的方式困惑,例如负向索引和数组切片。...在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...[How-to-Index-Slice-and-Reshape-NumPy-Arrays-for-Machine-Learning-in-Python.jpg] 在Python机器学习中如何索引、切片和重塑...[11] 我们也可以在切片中使用负向索引。例如,我们可以通过在-2(倒数第二项)处开始切片并且不指定'to'索引来切割列表中的最后两项;这就会一直切到维度末端。...(3, 2) (3, 2, 1) 概要 在本教程中,你了解了如何使用Python访问和重塑NumPy数组中的数据。 具体来说,你了解到: 如何将你的列表数据转换为NumPy数组。

19.1K90

NumPy 1.26 中文官方指南(一)

,但如果a和b中各包含数百万个数字,那么我们将为在 Python 中循环的低效率付出代价。...广播是用来描述操作的隐式逐点行为的术语;一般来说,在 NumPy 中,所有操作(不仅仅是算术操作,还有逻辑、位运算、函数等)都以这种隐式逐点方式行为,即它们进行广播。...第二个广播规则确保在特定维度上大小为 1 的数组,表现得就像它们在该维度上的最大形状的数组一样。假设“广播”数组在该维度上的数组元素值是相同的。 应用广播规则后,所有数组的大小必须匹配。...广播的第二规则确保在特定维度上大小为 1 的数组会像在该维度上具有最大形状的数组一样起作用。假定在广播数组中,数组元素的值沿该维度是相同的。 应用广播规则后,所有数组的大小必须匹配。...更多细节可以在 广播 中找到。 高级索引和索引技巧 NumPy 提供的索引功能比常规 Python 序列更多。除了之前看到的通过整数和切片进行索引外,数组还可以通过整数数组和布尔数组进行索引。

1.1K10
  • 卧谈会之numpy

    相比于上个月,在知识图谱方面深入研究了apoc导入及整个neo4j的可视化流程,对于Python爬虫从基础文深入到反爬文章,并利用python技术解决日常生活遇到的问题,学以致用,对于机器学习,相比上个月读书略有减少...布尔型数组访问 布尔型数组访问可以选择数组中任意元素。 这种访问方式用于选取数组中满足某些条件的元素。 还是以上述二维数组为例: 我们筛选所有大于3的数,并输出。...广播失败: axis: 0 1 2 a1 (3d array): 256 x 256 x 1 b (2d array): 220...代表的是它的索引值在x中出现的次数! 还是以上述x为例子,当我们设置weights参数时候,结果又是什么?...w中访问index=4的位置即可,w[4]=0.1 索引 1 出现在x中index=0与index=5位置,那么在w中访问index=0与index=5的位置即可,然后将两这个加和,计算得:w[0]+w

    1K40

    python:numpy详细教程

    例如,在3D空间一个点的坐标[1, 2, 3]是一个秩为1的数组,因为它只有一个轴。...更多重要ndarray对象属性有:      ndarray.ndim  数组轴的个数,在python的世界中,轴的个数被称作秩   ndarray.shape  数组的维度。...例如,你可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。   ...在NumPy中,这些叫作“通用函数”(ufunc)。在NumPy里这些函数作用按数组的元素运算,产生一个数组作为输出。   ...索引:比较矩阵和二维数组     注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上的。

    1.2K40

    python numpy 总结

    参考链接: Python中的Numpy.prod 先决条件    在阅读这个教程之前,你多少需要知道点python。如果你想重新回忆下,请看看Python Tutorial.   ...例如,在3D空间一个点的坐标[1, 2, 3]是一个秩为1的数组,因为它只有一个轴。...更多重要ndarray对象属性有:     ndarray.ndim  数组轴的个数,在python的世界中,轴的个数被称作秩   ndarray.shape  数组的维度。...在NumPy中,这些叫作“通用函数”(ufunc)。在NumPy里这些函数作用按数组的元素运算,产生一个数组作为输出。   ...索引:比较矩阵和二维数组    注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上的。

    80430

    NumPy的详细教程

    例如,在3D空间一个点的坐标[1, 2, 3]是一个秩为1的数组,因为它只有一个轴。...更多重要ndarray对象属性有:    ndarray.ndim  数组轴的个数,在python的世界中,轴的个数被称作秩   ndarray.shape  数组的维度。...在NumPy中,这些叫作“通用函数”(ufunc)。在NumPy里这些函数作用按数组的元素运算,产生一个数组作为输出。 ...花哨的索引和索引技巧   NumPy比普通Python序列提供更多的索引功能。除了索引整数和切片,正如我们之前看到的,数组可以被整数数组和布尔数组索引。   ...索引:比较矩阵和二维数组   注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上 的。

    79400

    Python数据分析 | Numpy与2维数组操作

    二、轴参数 在很多矩阵运算操作中,NumPy可以实现跨行或跨列的操作。为了适用任意维数的数组,NumPy引入了axis的概念。...有多种方法可以从一维数组中得到列向量,但并不包括transpose: [7d01dcf72487c68c1e6d99d58b199391.png] 使用reshape操作添加新的axis可以更新数组形状和索引...在NumPy中有一种更好的方法,无需在内存中存储整个I和J矩阵(虽然meshgrid已足够优秀,仅存储对原始向量的引用),仅存储形状矢量,然后通过广播规实现其余内容的处理: [653cd2fa67dc7d7ae1f6b14d0aa6676f.png...除了在二维或三维网格上初始化函数外,网格还可以用于索引数组: [5fbeb8c06cf6972f068787fd31d70184.png] 以上方法在稀疏网格中同样适用。...2维及更高维中的argmin和argmax函数分别返回最小和最大值的索引,通过unravel_index函数可以将其转换为二维坐标: [aafde336f3462deb4a36f8f355f8b6f0.

    1.8K41

    NumPy之:理解广播

    简介 广播描述的是NumPy如何计算不同形状的数组之间的运算。如果是较大的矩阵和较小的矩阵进行运算的话,较小的矩阵就会被广播,从而保证运算的正确进行。...本文将会以具体的例子详细讲解NumPy中广播的使用。 基础广播 正常情况下,两个数组需要进行运算,那么每个数组的对象都需要有一个相对应的值进行计算才可以。...第二个示例中的代码比第一个示例中的代码更有效,因为广播在乘法过程中移动的内存更少(b是标量而不是数组)。...广播规则 如果两个数组操作,NumPy会对两个数组的对象进行比较,从最后一个维度开始,如果两个数组的维度满足下面的两个条件,我们就认为这两个数组是兼容的,可以进行运算: 维度中的元素个数是相同的 其中一个维数是...维度中的元素个数是相同的,并不意味着要求两个数组具有相同的维度个数。

    1.1K40

    如何用Python实现神奇切图算法seam carving?

    在我们运行接缝裁剪算法时,被移除的线条会在紧密关联图像中这些区域的同时,试图保存图像中具有高能量的部分(较亮的区域)。...比如,下图的红线就是我们要找的缝隙: 那么我们是怎么发现这条线的?很明显(明显??),这个问题可以很好的转化为动态规划概念! 我们创建一个称为 M 的 2D 数组,存储该像素上可见的最小能量值。...所以,需要从图像顶部遍历至图像底部的最小能量值会出现在 M 的最后一行。我们需要从这里回溯,找到在该缝隙中出现的像素列,因此我们会使用这些值和 2D 数组,调用 backtrack。...,确保我们不会索引-1 if j == 0: idx = np.argmin(M[i - 1, j:j + 2])...,确保我们不会索引-1 if j == 0: idx = np.argmin(M[i-1, j:j + 2]) backtrack

    2.2K30

    NumPy之:理解广播

    简介 广播描述的是NumPy如何计算不同形状的数组之间的运算。如果是较大的矩阵和较小的矩阵进行运算的话,较小的矩阵就会被广播,从而保证运算的正确进行。...本文将会以具体的例子详细讲解NumPy中广播的使用。 基础广播 正常情况下,两个数组需要进行运算,那么每个数组的对象都需要有一个相对应的值进行计算才可以。...第二个示例中的代码比第一个示例中的代码更有效,因为广播在乘法过程中移动的内存更少(b是标量而不是数组)。...广播规则 如果两个数组操作,NumPy会对两个数组的对象进行比较,从最后一个维度开始,如果两个数组的维度满足下面的两个条件,我们就认为这两个数组是兼容的,可以进行运算: 维度中的元素个数是相同的 其中一个维数是...维度中的元素个数是相同的,并不意味着要求两个数组具有相同的维度个数。

    88550

    图解NumPy:常用函数的内在机制

    Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...,甚至两个向量之间的运算: 二维数组中的广播 行向量和列向量 正如上面的例子所示,在二维情况下,行向量和列向量的处理方式有所不同。...但实际上,NumPy 中还有一种更好的方法。我们没必要将内存耗在整个 I 和 J 矩阵上。存储形状合适的向量就足够了,广播规则可以完成其余工作。...用于二维及更高维的 argmin 和 argmax 函数会返回最小和最大值的第一个实例,在返回展开的索引上有点麻烦。...三维及更高维 当你通过调整一维向量的形状或转换嵌套的 Python 列表来创建 3D 数组时,索引的含义是 (z,y,x)。

    3.7K10

    图解NumPy:常用函数的内在机制

    Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...,甚至两个向量之间的运算: 二维数组中的广播 行向量和列向量 正如上面的例子所示,在二维情况下,行向量和列向量的处理方式有所不同。...但实际上,NumPy 中还有一种更好的方法。我们没必要将内存耗在整个 I 和 J 矩阵上。存储形状合适的向量就足够了,广播规则可以完成其余工作。...用于二维及更高维的 argmin 和 argmax 函数会返回最小和最大值的第一个实例,在返回展开的索引上有点麻烦。...三维及更高维 当你通过调整一维向量的形状或转换嵌套的 Python 列表来创建 3D 数组时,索引的含义是 (z,y,x)。

    3.3K20

    NumPy 1.26 中文文档(四十一)

    创建数组的副本,其元素重新排列,使得第 k 个位置的元素的值在排序数组中的位置。在分区数组中,所有在第 k 个元素之前的元素都小于或等于该元素,而在第 k 个元素之后的所有元素都大于或等于该元素。...keepdims布尔值,可选 如果设置为 True,则被减少的轴将作为大小为一的维度保留在结果中。使用此选项,结果将正确地广播到数组。 在 1.22.0 版本中新增。...“非零”一词是指 Python 2.x 内置方法 __nonzero__()(在 Python 3.x 中更名为 __bool__())对 Python 对象进行“真实性”测试。...函数的名称来自于“peak to peak”的缩写。 警告 ptp保留了数组的数据类型。...在计算 g 期间,i 和 j 被修正使用校正常数 alpha 和 beta,其选择取决于使用的 method。最后,注意由于 Python 使用基于 0 的索引,代码在内部从索引中再减去 1。

    25810

    收藏 | Numpy详细教程

    在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。 例如,在3D空间一个点的坐标[1, 2, 3]是一个秩为1的数组,因为它只有一个轴。...更多重要ndarray对象属性有: ndarray.ndim: 数组轴的个数,在python的世界中,轴的个数被称作秩 ndarray.shape: 数组的维度。...例如,你可以使用 array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。...花哨的索引和索引技巧 NumPy比普通Python序列提供更多的索引功能。除了索引整数和切片,正如我们之前看到的,数组可以被整数数组和布尔数组索引。...索引:比较矩阵和二维数组 注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上 的。

    2.5K20

    数据可视化入门

    ,快速、节省空间 矩阵运算,无需循环,可完成类似Matlab中的矢量运算 线性代数、随机数生成 ndarray,N维数组对象(矩阵) 所有元素必须是相同类型 ndim属性,维度个数 shape...数据类型 dtype, 类型名+位数,如 float64, int32 转换数组类型 - astype 矢量化 矢量运算,相同大小的数组键间的运算应用在元素上 矢量和标量运算,“广播”— 将标量...“广播”到各个元素 索引与切片 一维数组的索引与Python的列表索引功能相似 多维数组的索引 arr[r1:r2, c1:c2] arr[1,1] 等价 arr[1][1]...条件索引 布尔值多维数组 arr[condition] condition可以是多个条件组合 注意,多个条件组合要使用 & |,而不是and or ?...y) 常用的统计方法 np.mean, np.sum, np.max, np.min np.std, np.var np.argmax, np.argmin np.cumsum

    1.5K10

    入门 | 数据科学初学者必知的NumPy基础知识

    NumPy(Numerical Python)是 Python 中的一个线性代数库。...这篇教程介绍了数据科学初学者需要了解的 NumPy 基础知识,包括如何创建 NumPy 数组、如何使用 NumPy 中的广播机制、如何获取值以及如何操作数组。...更重要的是,大家可以通过本文了解到 NumPy 在 Python 列表中的优势:更简洁、更快速地读写项、更方便、更高效。 本教程将使用 Jupyter notebook 作为编辑器。 让我们开始吧!...,只需要使用 shape 函数即可: arr.shape 从 NumPy 数组中索引/选择多个元素(组) 在 NumPy 数组中进行索引与 Python 类似,只需输入想要的索引即可: my_array...: new_arr[(new_arr>6) & (new_arr<10)] 预期结果为:([7, 8, 9]) 广播机制 广播机制是一种快速改变 NumPy 数组中的值的方式。

    1.2K20

    入门 | 数据科学初学者必知的NumPy基础知识

    NumPy(Numerical Python)是 Python 中的一个线性代数库。...这篇教程介绍了数据科学初学者需要了解的 NumPy 基础知识,包括如何创建 NumPy 数组、如何使用 NumPy 中的广播机制、如何获取值以及如何操作数组。...更重要的是,大家可以通过本文了解到 NumPy 在 Python 列表中的优势:更简洁、更快速地读写项、更方便、更高效。 本教程将使用 Jupyter notebook 作为编辑器。 让我们开始吧!...,只需要使用 shape 函数即可: arr.shape 从 NumPy 数组中索引/选择多个元素(组) 在 NumPy 数组中进行索引与 Python 类似,只需输入想要的索引即可: my_array...: new_arr[(new_arr>6) & (new_arr<10)] 预期结果为:([7, 8, 9]) 广播机制 广播机制是一种快速改变 NumPy 数组中的值的方式。

    1.3K30

    【深度学习】 Python 和 NumPy 系列教程(廿五):Matplotlib详解:3、多子图和布局:subplot()函数

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容: Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类 Numpy:数组创建、数组操作、数组数学、...广播 Matplotlib:2d绘图、3d绘图、图表自定义、多子图和布局、图表自定义、多子图和布局 IPython:创建笔记本、典型工作流程 二、实验环境 matplotlib 3.5.3 numpy...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...ncols表示子图的列数 index表示当前子图的索引。

    9210
    领券