首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python:如何将令牌列表添加到dataframe的新列

在Python中,可以使用pandas库来操作数据框(dataframe)。要将令牌列表添加到dataframe的新列,可以按照以下步骤进行操作:

  1. 导入所需的库:import pandas as pd
  2. 创建一个包含数据的dataframe:data = {'令牌列表': [['token1', 'token2'], ['token3', 'token4'], ['token5', 'token6']]} df = pd.DataFrame(data)
  3. 定义一个函数,该函数将令牌列表作为输入,并返回一个字符串,将令牌列表中的令牌连接起来:def join_tokens(tokens): return ', '.join(tokens)
  4. 使用apply方法将函数应用于dataframe的新列:df['新列'] = df['令牌列表'].apply(join_tokens)

现在,dataframe中的新列将包含将令牌列表中的令牌连接起来的字符串。

关于pandas库的更多信息和使用方法,可以参考腾讯云的产品介绍链接地址:腾讯云-数据分析与人工智能-数据分析-Pandas

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

pyspark给dataframe增加实现示例

熟悉pandaspythoner 应该知道给dataframe增加一很容易,直接以字典形式指定就好了,pyspark中就不同了,摸索了一下,可以使用如下方式增加 from pyspark import...Jane”, 20, “gre…| 10| | Mary| 21| blue|[“Mary”, 21, “blue”]| 10| +—–+—+———+——————–+——-+ 2、简单根据某进行计算...比如我想对某做指定操作,但是对应函数没得咋办,造,自己造~ frame4 = frame.withColumn("detail_length", functions.UserDefinedFunction...20, “gre…| 3| | Mary| 21| blue|[“Mary”, 21, “blue”]| 3| +—–+—+———+——————–+————-+ 到此这篇关于pyspark给dataframe...增加实现示例文章就介绍到这了,更多相关pyspark dataframe增加内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

3.4K10

python dataframe筛选列表值转为list【常用】

筛选列表中,当b中为’1’时,所有c值,然后转为list 2 .筛选列表中,当a中为'one',b列为'1'时,所有c值,然后转为list 3 .将a整列值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...,当b中为’1’时,所有c值,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] #...筛选列表中,当a中为'one',b列为'1'时,所有c值,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist()...print(a_b_c) # out: ['一', '一'] # 将a整列值,转为list(两种) a_list_1 = df.a.tolist() a_list_2 = df['a'].tolist

5.1K10
  • dataframe做数据操作,列表推导式和apply那个效率高啊?

    一、前言 前几天在Python钻石群【一级大头虾选手】问了一个Python处理问题,这里拿出来给大家分享下。...二、实现过程 这里【ChatGPT】给出了一个思路,如下所示: 通常情况下,使用列表推导式效率比使用apply要高。因为列表推导式是基于Python底层循环语法实现,比apply更加高效。...在进行简单运算时,如对某一数据进行加减乘除等操作,可以通过以下代码使用列表推导式: df['new_col'] = [x*2 for x in df['old_col']] 如果需要进行复杂函数操作...(my_function) 但需要注意是,在处理大数据集时,apply函数可能会耗费较长时间。...这篇文章主要盘点了一个Python基础问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。

    29720

    python中pandas库中DataFrame对行和操作使用方法示例

    用pandas中DataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格中'w',使用点属性,返回是Series类型 data[['w']] #选择表格中'w',返回DataFrame...[-1:] #选取DataFrame最后一行,返回DataFrame data.loc['a',['w','x']] #返回‘a'行'w'、'x',这种用于选取行索引索引已知 data.iat...(1) #返回DataFrame第一行 最近处理数据时发现当pd.read_csv()数据时有时候会有读取到未命名,且该也用不到,一般是索引被换掉后导致,有强迫症看着难受,这时候dataframe.drop...github地址 到此这篇关于python中pandas库中DataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    Python:说说字典和散列表,散冲突解决原理

    Python 用散列表来实现 dict。 散列表其实是一个稀疏数组(总是有空白元素数组称为稀疏数组)。在一般书中,散列表单元通常叫做表元(bucket)。...Python会设法保证大概还有三分之一表元是空,当快要达到这个阀值时候,会进行扩容,将原散列表复制到一个更大列表里。 如果要把一个对象放入到散列表里,就先要计算这个元素键值。...下面主要来说明一下散列表算法: 为了获取键 search_key 所对应值 search_value,python 会首先调用 hash(search_key) 计算 search_key 值...无论何时,往 dict 里添加键,python 解析器都可能做出为字典扩容决定。扩容导致结果就是要新建一个更大列表,并把字典里已有的元素添加到列表里。...这个过程中可能发生冲突,导致列表中键次序变化。如果在迭代一个字典同时往里面添加键,会发生什么?不凑巧扩容了,不凑巧键次序变了,然后就 orz 了。

    2K30

    Pandas 25 式

    最直接方式是把 ::-1 传递给 loc 访问器,与 Python 里反转列表切片法一样。 ?...使用 Python 内置 glob 更方便。 ? 把文件名规则传递给 glob(),这里包括通配符,即可返回包含所有合规文件名列表。...通过赋值语句,把这两添加到DataFrame。 ? 如果想分割字符串,但只想保留分割结果,该怎么操作? ? 要是只想保留城市,可以选择只把城市加到 DataFrame 里。 ?...把 Series 里列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两,第二包含Python 整数列表。...年龄列有 1 位小数,票价列有 4 位小数,如何将这两显示小数位数标准化? 用以下代码让这两只显示 2 位小数。 ? 第一个参数是要设置选项名称,第二个参数是 Python 字符串格式。

    8.4K00

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    最直接方式是把 ::-1 传递给 loc 访问器,与 Python 里反转列表切片法一样。 ?...使用 Python 内置 glob 更方便。 ? 把文件名规则传递给 glob(),这里包括通配符,即可返回包含所有合规文件名列表。...通过赋值语句,把这两添加到DataFrame。 ? 如果想分割字符串,但只想保留分割结果,该怎么操作? ? 要是只想保留城市,可以选择只把城市加到 DataFrame 里。 ?...把 Series 里列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两,第二包含Python 整数列表。...年龄列有 1 位小数,票价列有 4 位小数,如何将这两显示小数位数标准化? 用以下代码让这两只显示 2 位小数。 ? 第一个参数是要设置选项名称,第二个参数是 Python 字符串格式。

    7.1K20

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    解决方法要解决DataFrame格式数据与ndarray格式数据不一致导致无法运算问题,我们可以通过将DataFrame某一转换为ndarray并重新赋值给变量,然后再进行运算。...要解决DataFrame格式数据与ndarray格式数据不一致导致无法运算问题,可以通过将DataFrame某一转换为ndarray并重新赋值给变量,然后再进行运算。...然后,我们可以直接对这两个ndarray进行运算,得到每个产品销售总额。最后,将运算结果添加到DataFrame​​Sales Total​​。...这使得ndarray在进行向量化操作时非常高效,比使用Python原生列表进行循环操作要快得多。...创建ndarray在numpy中,我们可以使用多种方式来创建ndarray对象:通过Python原生列表或元组创建:使用numpy.array()函数可以从一个Python原生列表或元组创建一个ndarray

    49220

    再见 for 循环!pandas 提速 315 倍!

    """用for循环计算enery cost,并添加到列表""" ... energy_cost_list = [] ... for i in range(len(df)): ......其次,它使用不透明对象范围(0,len(df))循环,然后再应用apply_tariff()之后,它必须将结果附加到用于创建DataFrame列表中。...pandas.apply方法接受函数callables并沿DataFrame轴(所有行或所有)应用。...一个技巧是:根据你条件,选择和分组DataFrame,然后对每个选定组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas.isin()方法选择行,然后在矢量化操作中实现特征添加。...在执行此操作之前,如果将date_time设置为DataFrame索引,会更方便: # 将date_time设置为DataFrame索引 df.set_index('date_time', inplace

    2.8K20

    如何用Python将时间序列转换为监督学习问题

    时间序列是按照时间索引排列一串数字,可以理解为有序值构成数据或有序列表。...t 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 通过在观测值数据中插入,我们可以将上面展示观测值位置下移一格,由于一行并没有数据...(1) print(df) 运行代码,我们在原有数据集基础上得到了两数据,第一为原始观测值,第二为下移后得到。...该函数返回一个值: return:为监督学习重组得到Pandas DataFrame序列。 数据集将被构造为DataFrame,每一根据变量编号以及该左移或右移步长来命名。...上面的函数定义了每默认名,所以你可以在返回数据上直接调用,t-1 命名(X)可以作为输入,t 命名可以作为输出(y)。 该函数同时兼容Python 2和Python 3。

    24.8K2110

    Python-科学计算-pandas-26-列表转df-2

    系统:Windows 11 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 这个系列讲讲Python科学计算及可视化 pandas模块 今天讲讲如何将一个列表转换为...df Part 1:场景说明 我们在工作中可能需要对一些列表或者字典数据进行运算 当然我们可以通过循环判断一波处理得到想要结果,但着实复杂低效 遇到这种计算问题,自然想到pandas这个非常好用库...那我们只需要将需要处理列表字典转换为pandasdf,这样后续处理就非常高效了 上一篇文章列表内每个元素是一个字典,那么如果列表元素也是一个列表如何处理呢?...") print(list_1) list_column = ["a", "b", "c", "d"] df = pd.DataFrame(list_1, columns=list_column...),因为列表本身没有列名信息,所以单独传了一个列名列表

    22920

    高效10个Pandas函数,你都用过吗?

    Python大数据分析 记录 分享 成长 ❝文章来源:towardsdatascience 作者:Soner Yıldırım 翻译\编辑:Python大数据分析 ❞ Pandas是python...Insert Insert用于在DataFrame指定位置中插入数据。默认情况下添加到末尾,但可以更改位置参数,将添加到任何位置。...,则 loc=0 column: 给插入取名,如 column='' value:值,数字、array、series等都可以 allow_duplicates: 是否允许列名重复,选择...Ture表示允许列名与已存在列名重复 接着用前面的df: 在第三位置插入: #值 new_col = np.random.randn(10) #在第三位置插入,从0开始计算...id_vars [元组, 列表或ndarray, 可选]:不需要被转换列名,引用用作标识符变量 value_vars [元组, 列表或ndarray, 可选]:引用要取消透视

    4.1K20

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    2、一些重要Pandas read_excel选项 ? 如果默认使用本地文件路径,用“\”表示,接受用“/”表示,更改斜杠可以将文件添加到Python文件所在文件夹中。...可以用工作表名字,或一个整数值来当作工作表index。 ? 4、使用工作表中列作为索引 除非明确提到,否则索引添加到DataFrame中,默认情况下从0开始。...5、略过行和 默认read_excel参数假定第一行是列表名称,会自动合并为DataFrame标签。...7、用列表筛选多种数值 ? 8、筛选不在列表或Excel中值 ? 9、用多个条件筛选多数据 输入应为一个表,此方法相当于excel中高级过滤器功能: ? 10、根据数字条件过滤 ?...4、将总添加到已存在数据集 ? 5、特定总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每总和 ?

    8.4K30

    使用Python在Neo4j中创建图数据库

    图数据库一个最常见问题是如何将数据存入数据库。在上一篇文章中,我展示了如何使用通过Docker设置Neo4j浏览器UI以几种不同方式之一实现这一点。...此外,authors_parsed列为我们提供了一个更清晰所有作者列表。当然,我们将保留标题栏作为论文主要属性。最后,我想保留categories。...,我们将在Python中做清理,以便说明 让我们创建两个帮助函数来清理这两: def get_author_list(line): # 清除author dataframe,在行中创建作者列表...$rows中,这些列表格式。...UNWIND命令获取列表每个实体并将其添加到数据库中。在此之后,我们使用一个辅助函数以批处理模式更新数据库,当你处理超过50k上传时,它会很有帮助。

    5.4K30

    Python lambda 函数深度总结

    Python 标准库相应函数:list()、tuple()、set ()、frozenset() 或 sorted()(返回排序列表) 让我们过滤一个数字列表,只选择大于 10 数字并返回一个按升序排序列表...因此由于 pandas Series 对象也是可迭代,我们可以在 DataFrame 列上应用 map() 函数来创建一个: import pandas as pd df = pd.DataFrame...10 1 2 0 20 2 3 0 30 3 4 0 40 4 5 0 50 我们还可以根据某些条件为另一创建一个...函数与 filter() 函数一起使用 如何将 lambda 函数与 map() 函数一起使用 我们如何在 pandas DataFrame 中使用 带有传递给它 lambda 函数 map()...函数 - 以及在这种情况下使用替代功能 如何将 lambda 函数与 reduce() 函数一起使用 在普通 Python 上使用 lambda 函数优缺点 希望今天讨论可以使 Python 中看似令人生畏

    2.2K30
    领券