首页
学习
活动
专区
圈层
工具
发布

Python pandas按列拆分Excel为多个文件

上一次学习了一个拆分的方法, 2019-09-14文章 Python pandas依列拆分为多个Excel文件 还是用循环数据的方法来进行逐行判断并进行组合,再拆分。...总是感觉与VBA的差别不大,Python的强大功能没能体现出来。今天终于学习到了。...import pandas as pd data=pd.DataFrame(pd.read_excel('汇总.xlsx',header=1)) #读取Excel数据并转化为DataFrame,跳过第一行...,以第二行的数据的列名 bj_list=list(data['班别'].drop_duplicates()) #把“班别”一列进行删除重复项并存入到列表中 for i in bj_list: tempdata...False) #由列表进行循环,把指定的班别所有的数据存入到一个temp的DataFrame中,把所有数据转化为str,再写入excel文件 ======今天学习到此=====

4.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...唯一的区别是,在该方法中,我们需要指定参数axis=1。下面是.drop()方法的一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除的列的名称列表。...图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。...实际上我们没有删除,而是创建了一个新的数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两列。然后,我们将新创建的数据框架赋值给原始数据框架以完成“删除操作”。注意代码中的双方括号。

    11.3K20

    用过Excel,就会获取pandas数据框架中的值、行和列

    标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。

    30K60

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    6.1K10

    Python 读取excel指定的列

    还没有介绍如何读取指定的列。 二、举例 目前有一张水果报价表,内容如下: ? 需要提取品名和成本价,完整代码如下: #!.../usr/bin/env python3 # coding: utf-8 import xlrd # 打开excel文件,创建一个workbook对象,book对象也就是fruits.xlsx文件,表含有...rbook.sheets() # xls默认有3个工作簿,Sheet1,Sheet2,Sheet3 rsheet = rbook.sheet_by_index(0)  # 取第一个工作簿 # 循环工作簿的所有行...for row in rsheet.get_rows():     product_column = row[1]  # 品名所在的列     product_value = product_column.value...= '品名':  # 排除第一行         price_column = row[4]  # 价格所在的列         price_value = price_column.value

    3.1K10

    Python pandas读取Excel文件

    学习Excel技术,关注微信公众号: excelperfect 标签:Python与Excel,pandas 要使用Python处理数据,首先要将数据装载到Python,这里使用Python pandas...pandas是Python编程语言中数据操作的事实标准。如果使用Python处理任何形式的数据,需要pandas。...如果安装出现异常,可以还需要先安装openpyxl: pip install openpyxl pandas库提供了几种便捷的方法来读取不同的数据源,包括Excel和CSV文件。...图4:自定义列标题名称 usecols 通过指定usecols,我们限制加载到Python中的Excel列,如果你有一个大型数据集,并且不需要所有列,就可以使用这个参数。...下面的示例将只读取顾客姓名和购物名列到Python。 图5:指定我们想要的列 pd.read_csv()方法及参数 顾名思义,此方法读取csv文件。

    5.7K40

    Python Excel最佳实战 -- Pandas

    iTesting,爱测试,爱分享 在做自动化过程中,难免会跟Excel打交道,以前我们读写excel大都用xlrd, xlwt, 但是现在有了更好用的方式 --pandas, 我用了下感觉效果不错,索性写了读和写的一个小例子...0.什么是pandas: pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一 1....安装: pip install pandas 2.Excel 读写实践: import os import pandas as pd import xlsxwriter from openpyxl import...Python有很多优秀的第三方库等待着我们去发现,如果你们有比较好的实践,也可以告诉蔡老师 :)

    1.3K20

    懂Excel就能轻松入门Python数据分析包pandas(十二):多列堆叠

    > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据的重灾区,这主要是因为他有高度的灵活性,今天来看看一个多列堆叠问题。...案例1 公司一次线下促销活动,让运营部的小伙伴用 Excel 简单记录了商品数量,但是他们却把3天的记录分别记录在不同的列上: 你心中期望的数据是这样子的: 现在你要做各种统计数据,3天的数据手工完成当然没问题...现在来看看,在 pandas 中怎么简单转换成规范的2列数据: - 第一句主要是为了最后结果的标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy 的 reshape 方法,即可完成需求...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy 的 reshape 方法,可以快速把数组转换成指定行数或列数 - 用 -1 可以让 numpy 自动计算行或列的数量

    1K10

    懂Excel就能轻松入门Python数据分析包pandas(十二):多列堆叠

    > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据的重灾区,这主要是因为他有高度的灵活性,今天来看看一个多列堆叠问题。...案例1 公司一次线下促销活动,让运营部的小伙伴用 Excel 简单记录了商品数量,但是他们却把3天的记录分别记录在不同的列上: 你心中期望的数据是这样子的: 现在你要做各种统计数据,3天的数据手工完成当然没问题...现在来看看,在 pandas 中怎么简单转换成规范的2列数据: - 第一句主要是为了最后结果的标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy 的 reshape 方法,即可完成需求...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy 的 reshape 方法,可以快速把数组转换成指定行数或列数 - 用 -1 可以让 numpy 自动计算行或列的数量

    1.1K20

    Python pandas导excel数据量太大报错问题

    开发环境 MySQL 10.1.38-MariaDB-1~bionic Python3.7.8 开发工具 PyCharm2018.1 SmartGit18.1 Navicat15.0.28 问题描述 最近在用...python的pandas库导Excel表,遇到数据量太大,导出时候直接抛出异常 ValueError: This sheet is too large!...Your sheet size is: 1286685, 19 Max sheet size is: 1048576, 16384 原本的代码实现是: pd.to_excel("fileName.xlsx..., engine='openpyxl') 因为单个excel文件有输出长度65535的限制,所以尝试修改文件格式为csv可以临时解决问题,修改一下代码,如: pd.to_csv("fileName.csv...") 总结:对于数据量很大的Excel导出,可以尝试进行数据SQL的改写,过滤不必要的业务数据,或者使用程序分成多个Excel也是可以的,上面的方法都不想采用,可以临时用csv文件导出,csv文件可以可以支持大文件

    1.5K20

    pandas 导出 Excel 文件的时候自动列宽,自动加上边框

    尝试过 xlrd、xlwt、openpyxl、xlwings、pandas 来处理 Excel,如果说除了读写 Excel,还要做数据分析,还是 pandas 最好用,大多数情况下,你根本不需要把数据插入数据库...至于 pandas 怎么用,官方网站有个 10 分钟上手 pandas 的教程[1],没有体验过的可以去体验下。也可以参考 API 说明[2]。...今天主要分享一段代码,可以让 pandas 导出 Excel 文件的时候自动列宽,自动加上边框,省去了手工调整的麻烦。...writer.save() 最后的话 本文分享了如何在导出 Excel 文件的时候自动列宽,自动加上边框。...参考资料 [1] 10 分钟上手 pandas 的教程: https://pandas.pydata.org/docs/user_guide/10min.html [2] API 说明: https:/

    2.8K10

    【Python】pandas中的read_excel()和to_excel()函数解析与代码实现

    sheet_name na_rep colums header index 总结 前言 Pandas是Python中用于数据分析和操作的强大库,它提供了许多方便的函数来处理各种格式的数据。...Excel文件作为一种常见的数据存储格式,在数据处理中经常用到。 Pandas提供了read_excel()函数来读取Excel文件,以及to_excel()函数将数据写入Excel。...一、read_excel()函数简介 Pandas是一个开源的数据分析和操作库,它提供了快速、灵活和表达力强的数据结构,旨在使数据清洗和分析工作变得更加简单易行。...Pandas是基于NumPy构建的,因此可以与NumPy无缝集成。 read_excel()函数用于读取Excel文件并将其转换为Pandas的DataFrame对象。这是处理Excel数据的基础。...示例代码 import pandas as pd # 读取Excel文件 df = pd.read_excel('path_to_your_excel_file.xlsx') # 只读取特定的列 df

    2.9K20

    盘点一个Pandas多列分组问题

    一、前言 前几天在Python白银交流群【在途中要勤奋的熏肉肉】问了一道Pandas处理的问题,如下图所示。...原始数据如下图所示: 下面是她自己写的代码: # df['name'] = df['name'].str.lower() test['pid'] = test['pid'].astype(int) test...'-'.join(set(s)), } testdf = test.groupby(test['pid']).aggregate(aggregate_funcs) print(testdf) 目前的大概思路如下...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一道使用Pandas处理数据的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【在途中要勤奋的熏肉肉】提问,感谢【月神】给出的思路和代码解析,感谢【dcpeng】、【猫药师Kelly】等人参与学习交流。

    1.6K10
    领券