首页
学习
活动
专区
圈层
工具
发布

如何系统的学习python中的numpy,pandas,matplotlib

Python有许多开源库和工具,如Numpy、Pandas、Matplotlib和Scikit-Learn,可以用于数据处理、可视化、建模和机器学习等任务。...问题很多的小明就问了:那怎么系统的学好python中的numpy,pandas,matplotlib 第一章:numpy 一丶numpy基本类型 NumPy是Python中用于数值计算和科学计算的重要库之一...二丶图表的基本元素 Matplotlib 是 Python 中最经典的数据可视化库之一,提供了多种数据可视化的图表类型,包括折线图、散点图、柱状图、饼图等等。...总结 学习 Python 中的 NumPy、Pandas 和 Matplotlib 等数据科学库可以带来许多好处,如下所述: 带来更高效、更便捷的数据科学编程体验:NumPy、Pandas 和 Matplotlib...拓展 Python 数据科学相关的功能和应用:Python 原生的数据处理、数据分析和数据可视化功能相对较弱,学习使用 NumPy、Pandas 和 Matplotlib 等数据科学库可以拓展这些功能,

16910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Python Matplotlib中制作瀑布图

    标签:Python,Matplotlib,瀑布图 我们将用Python制作瀑布图,特别是使用matplotlib库。瀑布图显示了运行总数以及增减,这对于属性分析来说是很好的选择。...Matplotlib没有像“waterfall_chart()”这样的神奇函数,使我们能够用一行代码就绘制瀑布图。然而,可以使用一点小小的技巧在Python中自定义自己的瀑布图。...import pandas as pd import matplotlib.pyplot as plt import numpy as np df= pd.DataFrame({'category':[...这两个新的列tot和tot1为我们提供了每个瀑布条的起点和终点。例如,在第2行Expenses(费用)中,起点是110,终点是90。...图2 由于起点和终点可以位于两个新列中的任意一列(取决于值的符号),因此我们可以再创建两列来捕获upper点和lower点: lower= df[['tot','tot1']].min(axis=1)

    3.7K20

    Pandas与Matplotlib:Python中的动态数据可视化

    在本文中,我们将探讨如何使用Python中的Pandas和Matplotlib库来实现动态数据可视化,并以访问京东数据为案例进行详细说明。 为什么选择Pandas和Matplotlib?...Pandas Pandas是一个开源的Python数据分析工具库,它提供了快速、灵活和表达力强的数据结构,旨在使数据清洗和分析工作变得更加简单易行。...Matplotlib可以用于在Python脚本、Python和IPython shell、Jupyter notebook、Web应用程序服务器和四个图形用户界面工具包中生成图表。...在这个例子中,我们将使用Pandas生成一些模拟数据。 2. 使用Matplotlib创建基础图表 接下来,我们使用Matplotlib创建一个基础的折线图。 3....和Matplotlib,我们可以在Python中创建动态和交互式的数据可视化图表。

    57910

    Pandas与Matplotlib:Python中的动态数据可视化

    在本文中,我们将探讨如何使用Python中的Pandas和Matplotlib库来实现动态数据可视化,并以访问京东数据为案例进行详细说明。为什么选择Pandas和Matplotlib?...PandasPandas是一个开源的Python数据分析工具库,它提供了快速、灵活和表达力强的数据结构,旨在使数据清洗和分析工作变得更加简单易行。...Matplotlib可以用于在Python脚本、Python和IPython shell、Jupyter notebook、Web应用程序服务器和四个图形用户界面工具包中生成图表。...在这个例子中,我们将使用Pandas生成一些模拟数据。2. 使用Matplotlib创建基础图表接下来,我们使用Matplotlib创建一个基础的折线图。3....和Matplotlib,我们可以在Python中创建动态和交互式的数据可视化图表。

    78110

    Python+pandas+matplotlib控制不同曲线的属性

    封面图片:《Python程序设计实验指导书》(ISBN:9787302525790),董付国,清华大学出版社 图书详情:https://item.jd.com/12592638.html =======...==== pandas的Series和DataFrame结构的plot()方法可以自动调用matplotlib的功能进行绘图,在数据分析和处理时可以很方便地进行可视化。...这样的图虽然已经包含了必需的图形信息,但还是缺少一些元素,例如图形标题、纵轴标签,可以设置DataFrame的plot()方法的title参数来实现图形标题(可以使用help()函数查看plot()方法完整用法和所有参数含义...),使用这样方式绘制的图形也是可以通过pyplot进行控制的,这样就可以使用pyplot的ylabel()函数来设置图形纵轴标签了,例如 ?...类似地,通过pyplot的其他函数还可以对图形坐标轴进行更多设置,可以参考公众号“Python小屋”之前推送过的文章。 上面绘制的图形中,两条曲线的线型、线宽都是一样的,只是颜色不同。

    1.5K10

    python相关库的安装:pandas,numpy,matplotlib,statsmodels

    -i https://pypi.tuna.tsinghua.edu.cn/simple 该过程不仅安装了 matplotlib ,还安装了依赖的 numpy、python-dateutil、kiwisolver...的地址 第一种情况打开cmd,输入where python,查看python.exe的地址。...where python 第二种情况: 如果没有显示本机上的python解释器,可以在电脑下端的搜索框中搜python,会显示python解释器,选择一个你要用的解释器版本。...我选择的是3.12版本的 打开文件位置:鼠标右键 接着继续打开这个python 3.12版本快捷方式的文件所在位置。...python.exe的地址 之一直点确认OK,到下面的页面,可以看到第一步的python解释器地址在这里,表示为这个新项目配置好了第一步搜索的地址所对应的python解释器。

    1.4K10

    tidyverse:R语言中相当于python中pandas+matplotlib的存在

    从文件中读取数据 purrr:(提供好用的编程函数 tibble:data.frame升级款 stringr:处理字符,查找、替换等 forcats:处理因子问题 ?...data位置 管道函数在tidyverse中,管道符号是数据整理的主力,可以把许多功能连在一起,而且简洁好看,比起R的基本代码更加容易阅读!...例如:x %>% f(y) 等价于 f(x,y) Rstudio中快捷键: ctrl+shift+m 以R中自带的iris(鸢尾花数据集)为例: > head(iris,n=3) Sepal.Length...()和 spread()。...#key:将原数据框中的所有列赋给一个新变量key #value:将原数据框中的所有值赋给一个新变量value #…:可以指定哪些列聚到同一列中 #na.rm:是否删除缺失值 widedata <-

    6K10

    Python中利用Matplotlib绘制多图并合并展示

    大家好,最近在研究在搞Python的大作业,有个需求就是利用Matplotlib画几个像模像样的统计图然后合并在一张图中,因为此前很少用这方面的东西,所以折腾了不少时间,今天介绍一下。...1 subplot多合一 其实,利用python 的matplotlib包下的subplot函数可以将多个子图放在同一个画板上。...子图1和子图2与上面的一样,主要是子图3,plt.subplot(212)表示将整个画板分成两部分后取第2块,即下面的部分。...- End - 参考资料: python笔记:matplotlib的简单快速入门之多图合并(2) https://blog.csdn.net/abc13526222160/article/details.../85276736 Matplotlib的子图subplot的使用 https://www.jianshu.com/p/de223a79217a 使用matplotlib:subplot绘制多个子图

    16.9K40

    10 种常用 Matplotlib 图的 Python 代码

    喜欢的朋友欢迎关注小编,除了分享技术文章之外还有很多福利,私信“资料”可以领取包括不限于Python实战演练、PDF电子文档、面试集锦、学习资料等。 柱状图 柱状图有效地传达了项目的排名顺序。...连续变量的直方图 直方图显示给定变量的频率分布。下面的表示基于分类变量对频率条进行分组,从而更好地了解连续变量和串联变量。...散点图 Scatteplot是用于研究两个变量之间关系的经典和基本图。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在Matplotlib,你可以方便地使用。...饼图 饼图是显示组组成的经典方法。但是,如今一般不建议使用它,因为馅饼部分的面积有时可能会引起误解。因此,如果要使用饼图,强烈建议明确写下饼图各部分的百分比或数字。...区域图未堆叠 未堆积的面积图用于可视化两个或多个系列相对于彼此的进度(涨跌)。在下面的图表中,您可以清楚地看到随着失业时间的中位数增加,个人储蓄率如何下降。未堆积面积图很好地显示了这种现象。

    89620

    基于 Python 和 Pandas 的

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习....Pandas 模块是一个高性能,高效率和高水平的数据分析库. 从本质上讲,它非常像操作电子表格的无头版本,如Excel. 我们所使用的大部分的数据集都可以被转换成 dataframes(数据框架)....但是如果你不熟悉, 可以看下我的解释: 一个 dataframe 就很像是一个仅有行和列组成的电子表格. 现在开始, 我们可以使用 Pandas 以光速对数据集进行一系列的操作....Pandas 也是可以与很多其他数据分析库兼容的, 比如用于机器学习的 Scikit-Learn, 用于图形绘制的 Matplotlib, NumPy 等....以上就是对 Pandas 一个简单快速的介绍. 在这个整个系列教程中, 我将会带到更多的Pandas 的基础知识, 还有一些对 dataframe 的操作.

    1.5K20

    干货,25个常用Matplotlib图的Python代码

    作者:zsx_yiyiyi 编辑:python大本营 阅读文本大概需要 6.66 分钟。 50个Matplotlib图的汇编,在数据分析和可视化中最有用。...此列表允许您使用Python的Matplotlib和Seaborn库选择要显示的可视化对象。...带边界的气泡图 有时,您希望在边界内显示一组点以强调其重要性。在此示例中,您将从应该被环绕的数据帧中获取记录,并将其传递给下面的代码中描述的记录。...发散型文本 分散的文本类似于发散条,如果你想以一种漂亮和可呈现的方式显示图表中每个项目的价值,它更喜欢。...14.面积图 通过对轴和线之间的区域进行着色,区域图不仅强调峰值和低谷,而且还强调高点和低点的持续时间。高点持续时间越长,线下面积越大。

    3.3K51

    用Python的Pandas和Matplotlib绘制股票唐奇安通道,布林带通道和鳄鱼组线

    这里将根据若干算法,计算并绘制多种价格通道,从中大家一方面可以积累股市分析的经验,另一方面还能进一步掌握基于pandas的数据分析方法,以及基于matplotlib的可视化技巧。...范例中,就将演示用pandas库计算相关数值,并用matplotlib绘制鳄鱼组线的做法。...文本相关链接: 用Python爬取股票数据,绘制K线和均线并用机器学习预测股价(来自我出的书) 用Python语言绘制股市OBV指标效果 程序员如何高效学Python,如何高效用Python挣钱 用...matplotlib和pandas绘制股票MACD指标图,并验证化交易策略 向大家介绍我的新书:《基于股票大数据分析的Python入门实战》 通过机器学习的线性回归算法预测股票走势(用Python实现...用python的matplotlib和numpy库绘制股票K线均线和成交量的整合效果(含量化验证交易策略代码) 用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码

    2.2K40

    (六)Python:Pandas中的DataFrame

    、列索引和值,代码如下所示: import pandas as pd import numpy as np data = np.array([('aaaa', 4000), ('bbbb', 5000...2    5000 3    6000 Name: pay, dtype: object 取得第零行和第一行的第零列 1    xiaoming 2    xiaohong Name:...(loc)和位置(iloc)索引,也可通过 append()方法或 concat()函数等进行处理,以 loc 为例,例如要给 aDF 添加一个新行,可用如下方法: import pandas as pd...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用,具体代码如下所示

    6.8K20

    (五)Python:Pandas中的Series

    目录 基本特征 创建 自动生成索引 自定义生成索引 使用 基本运算 数据对齐 ---- 基本特征 类似一维数组的对象 由数据和索引组成 有序定长的字典 创建         Series能创建出带有数据和索引的字典来...创建方法如下所示: 自动生成索引         Series能创建自动生成索引的字典,索引从0开始,代码如下所示: import pandas as pd aSer = pd.Series([1,...bSer = pd.Series(data, index= sindex) # 根据自身的值和把另一个列表作为索引创建一个Series print(bSer) # 对应索引无数据的...: bool 根据自身的值和把另一个列表作为索引创建一个Series AXP      86.40 CSCO    122.64 BA       99.44 AAPL       NaN...数据对齐的一个重要功能是:在运算中自动对齐不同索引的数据,代码如下所示: import pandas as pd data = {'AXP': '86.40', 'CSCO': '122.64', '

    1.2K20
    领券