目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog.shinelee.me...卷积神经网络中的Winograd 要将Winograd应用在卷积神经网络中,还需要回答下面两个问题: 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大...在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做?...注意图中的Matrix Multiplication,对应3维卷积中逐channel卷积后的对应位置求和,相当于\((m+r-1)^2\)个矩阵乘积,参与乘积的矩阵尺寸分别为\(\lceil H / m...只适用于较小的卷积核和tile(对大尺寸的卷积核,可使用FFT加速),在目前流行的网络中,小尺寸卷积核是主流,典型实现如\(F(6\times 6, 3\times 3)\)、\(F(2\times 2
卷积神经网络是一种特殊的神经网络结构,是自动驾驶汽车、人脸识别系统等计算机视觉应用的基础,其中基本的矩阵乘法运算被卷积运算取代。它们专门处理具有网格状拓扑结构的数据。...历史 卷积神经网络最初是由福岛邦彦在1980年引入的,模型名为Neocognitron。它的灵感来自于Hubel和Weisel提出的神经系统的层次模型。...此后,卷积神经网络不断向前发展,基于CNN的体系结构不断赢得ImageNet, 2015年,基于卷积神经网络的体系结构ResNet的误差率超过人类水平的5.1%,误差率为3.57%。...在卷积运算中,首先将核翻转180度,然后应用于图像。卷积的基本性质是将一个核与一个离散的单位脉冲进行卷积,在脉冲的位置上得到一个核的拷贝。...卷积运算同样遵循平移不变性和局部性的性质。 ? 注意: 尽管这两个操作稍有不同,但是所使用的核是否对称并不重要。 结论: 在这篇文章中,我们简要讨论了卷积神经网络的历史和一些特性。
本文由腾讯云+社区自动同步,原文地址 https://stackoverflow.club/article/implement_neural_network_using_python/ P39 为了优化这么多参数...,训练集必须很大,和参数数量在一个数量级上 P54 一般采用多次随机初始化参数,观察损失值分布,如果方差较小,说明网络规模较大;如果方差过大,说明网络规模过小,需要增加网络规模 P92 VGG是简单的卷积层...、池化层和全连接层的串联,Inception和Residual Net连接模式复杂,但是网络参数更少,学习效率更高 P97 小批量样本的数量是一个超参数,一般取32、64、128等,数据量是2的指数,运算效率会更高...(n)/sqrt(n), 其中n是神经元连接的输入神经元数量。...注意小数随机初始化并不一定会得到好的结果,因为在梯度反向传播的时候,会计算出非常小的梯度,减慢收敛速度。
这篇文章介绍如何使用Michael Nielsen 用python写的卷积神经网络代码,以及比较卷积神经网络和普通神经网络预测的效果。 这个例子是经典的识别MNIST手写体的AI程序。...这个程序会对这样的样本进行训练,并在测试集上验证正确率。 ? 至于卷积神经网络的原理,我以后会单独写一篇文章介绍。...pip install Theano 下载 代码 git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 卷积神经网络在...of 97.76% obtained at iteration 299999 Corresponding test accuracy of 97.79% 准确率为97.79%,或者说错误率2.21% 卷积神经网络...相关文章 卷积神经网络的原理
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些? 1....在卷积神经网络中,一般情况下,卷积核越大,感受野(receptive field)越大,看到的图片信息越多,所获得的全局特征越好。...这也是现在深度卷积神经网络虽然效果拔群,但是一直为人诟病的原因之一。 2. 扩张卷积 ?...有大佬一句话总结:转置卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。...深度可分离卷积 在神经网络中,我们通常使用称为深度可分离卷积的东西。这将执行空间卷积,同时保持通道分离,然后进行深度卷积。
其中,C是通道的数量,N是所有其他维度的乘积(稍后我们将看到代码) 对x进行1x1卷积,得到f, g, h。这将改变通道的数量从C到C*: ? ?...计算f(x)和g(x)中像素位置之间的一系列softmax权重: ? 这些权重称为“注意力图”,本质上是量化图像中像素j相对于像素i的“重要性”。...由于这些权重(β)是在特征集的整个高度和宽度上计算的,因此接收场不再局限于小内核的大小。 将自我注意层的输出计算为: ? ? 这里,v是另一个1x1卷积的输出。...作为最后一步,我们将输入特征x添加到输出的加权中(gamma是另一个可学习的标量参数): ?...第17行:恢复特征的原始形状 此实现与本文中描述的算法有所不同(但等效),因为它将1x1卷积v(x)和h(x)组合在一起,并且调用为h(x)或“值”。组合的1x1转换层具有C个输入通道和C个输出通道。
图像是3维形状,这个形状中应该含有重要的空间信息。比如空间上邻近的像素为相似的值、RBG的各个通道之间分别有密切的关联性、相距较远的像素之间没有什么关联等,3维形状中可能隐藏有值得提取的本质模式。...当输入数据是图像时,卷积层会以3维数据的形式接收输入数据,并同样以3维数据的形式输出至下一层。因此,在CNN中,可以(有可能)正确理解图像等具有形状的数据。...在全连接神经网络中,除了权重参数,还存在偏置。CNN中,滤波器的参数就对应之前的权重,并且,CNN中也存在偏置。...三维数据的卷积运算,通道方向上有多个特征图时,会按通道进行输入数据和滤波器的卷积运算,然后将结果相加,从而得到输出。 在上面的图中,输出的是一张特征图,换句话说,就是通道数为1的特征图。...卷积运算的处理流如下: 卷积运算的处理流,批处理如下: 而池化层是缩小高、长空间上的运算。 上图是Max池化,取出2×2区域中的最大值元素。
2、卷积层理解 CNN里面最重要的构建单元就是卷积层 神经元在第一个卷积层不是连接输入图片的每一个像素,只是连接它们感受野的像素,以此类推, 第二个卷积层的每一个神经元仅连接位于第一个卷积层的一个小方块的神经元...,这种情况下,输出神经元个数等于输入神经元个数除以步长 ceil(13/5)=3,当步长为1时卷积完后的长宽一样,像素点一样,维度一样(输入神经元的个数和输出神经元的个数一样) 4、卷积的计算 假设有一个...5*5的图像,使用一个3*3的filter(卷积核)进行卷积,想得到一个3*3(没有使用Zero_padding,因为下一层和上一层长宽不一样)的Feature Map。...结论: 在一个卷积层里面可以有多个卷积核,每一个卷积核可以有多个维度 每一个卷积核生成一个Feature_map,因为有两个卷积核,所以生成两个Feacture_Map 7、卷积核的设置 Vertical...X = tf.placeholder(tf.float32, shape=(None, height, width, channels)) # strides=[1, 2, 2, 1] 中第一最后一个为
前言 一维梯度检查 导入依赖包 正向传播 反向传播 开始检查 多维梯度检查 向前传播 反向传播 开始检查 参考资料 前言 image.png 一维梯度检查 image.png ?...Y -- m的样本的标签 parameters -- 包含参数的python字典 "W1", "b1", "W2", "b2", "W3", "b3":...Arguments: parameters --包含参数的python字典 "W1", "b1", "W2", "b2", "W3", "b3": grad -- backward_propagation_n...* np.sum(dZ1, axis=1, keepdims=True) 我们再检查一遍的结果是: 你的反向传播效果非常好!...difference = 1.18904178766e-07 参考资料 http://deeplearning.ai/ 该笔记是学习吴恩达老师的课程写的。初学者入门,如有理解有误的,欢迎批评指正!
我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。...但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积! 比如在残差网络的直连里: ? 残差网络的Bootleneck残差模块里: ?...在GoogleNet的Inception模块里: ? 都有1*1卷积核的出现,那么它到底是做什么的?我们应该如何理解1*1卷积的原理?...举个例子,比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*5,即6个通道变成5个通道: 如下图就是一个W*H*6的特征,而1*1的卷积核在图上标出,卷积核自身的厚度也是...通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5。
有很多卷积神经网络文章解释了 CNN 是什么以及它的用途是什么,而本文将用 C++ 编写一个 CNN 和一个名为 mlpack 的库来对MNIST数据集进行分类。...你们可能会问为什么 C++ 在 Python 中很容易使用大量库,你们现在可能已经看到一些特斯拉汽车,这些类型的系统需要从它们的环境中进行实时推理,而 Python 非常适合原型设计,但不提供实时当使用它部署如此庞大的模型时会更新...二、MINST数据集 我们要使用的数据包含在一个 CSV 文件中,由 0 到 9 的数字图像组成,其中列包含标签,行包含特征,但是当我们要将数据加载到矩阵中时,数据将被转置,并且提到哪个特征的标签也将被加载...让我们处理和删除描述每一行中包含的内容的列,如我在数据部分所述,并为训练、验证和测试集的标签和特征创建一个单独的矩阵。...三、卷积框架 现在让我们看一下我们将要定义的简单卷积架构。
在深度学习的过程中,很多神经网络都会用到各种卷积核来进行操作,那么我们就简单讲一下卷积的原理和实现过程。...那么卷积在神经网络中的作用是什么呢?一开始的传统神经网络是没有卷积层的,都是隐藏层加生全连接层的结构,这样在中间得到的特征都是线性的,不能提取到一个局部的特征。...而卷积神经网络的出现解决了这个问题,通过对一个局部区域进行卷积操作得到这个局部区域的特征值传入下层大大提升了神经网络提取特征的能力,并且还减小了数据的大小。 那么看看卷积的过程: ?...)一小块区域的特征,而不必像传统神经网络一样一个值一个值的提取。...二.反卷积 既然有卷积过程那么肯定也有反卷积的过程对不对。不然怎么进行卷积神经网络的反向传导呢?嘿嘿 反卷积通常用于将低维特征映射成高维输入,与卷积操作的作用相反。还是看图比较舒服是吧: ?
卷积神经网络之父YannLeCuu在1988年提出卷积神经网络时,将这种网络命名为LeNet。现在的卷积神经网络都是基于类似LeNet的网络构架。下图是一个简单的卷积神经网络的图例。...一个卷积神经网络由一个或多个卷积层(Convolution)+池化层(Pooling),再加上一个全连结的前向神经网络组成。 卷积层Convolution 前面咱们已经知道图像卷积操作的原理了。...需要注意的是,在卷积神经网络的训练过程中,不仅前向神经网络的权重需要训练,卷积层中的卷积核,也是通过训练得到的。所以初始时,我们只定义卷积层的层数,以及每一层有多少卷积核,不对卷积核本身做定义。...当我们研究训练好的卷积核就能发现,神经网络训练出的卷积核很多对人来说是没有对应意义的。...下图是一个卷积神经网络在做物体识别中,对于人脸识别训练出的卷积核的一个图例。 这里介绍了一个基本的卷积神经网络的拓扑结构。在实际应用中,还会有一些细节上的考虑。
前言 这是卷积神经网络学习路线的第一篇文章,这篇文章主要为大家介绍卷积神经网络的组件以及直观的为大家解释一下卷积层是如何在图像中发挥作用的。...卷积神经网络的组件 从AlexNet在2012年ImageNet图像分类识别比赛中以碾压性的精度夺冠开始,卷积神经网络就一直流行到了现在。...现在,卷积神经网络已经被广泛的应用在了图像识别,自然语言处理,语音识别等领域,尤其在图像识别中取得了巨大的成功。本系列就开始带大家一起揭开卷积神经网络的神秘面纱,尝试窥探它背后的原理。...卷积层 卷积层(Convolution Layer)是卷积神经网络的核心组件,它的作用通常是对输入数据进行特征提取,通过卷积核矩阵对原始数据中隐含关联性进行抽象。原始的二维卷积算子的公式如下: ?...后记 本节是卷积神经网络学习路线(一),主要讲了卷积神经网络的组件以及卷积层是如何在图像中起作用的?希望对大家有帮助。
而kernel中的3代表对input的x上的三个通道上均进行卷积运算。而multi-kernels中的16泛指包括了blur、edge等16个功能、3代表对每一个通道上的逐渐进行卷积运算。...这里要求可以从结果逆推出bias和kernel的参数值。 那么这种持续的叠加会输出什么结果呢,如下所示 ? 最初的小汽车经过多个卷积层后依次输出的结果如上,神经网络会从这上面提取到不同的特征结构。...总而言之,通过不断地卷积,可以持续提取到不同的特征。 那么在pytorch中,是如何实现这种代码的编写?...# 这种神经网络结构的编写要用到nn.Conv2d # 该API意为进行2D的函数卷积层计算 import torch import torch.nn as nn layer = nn.Conv2d...= torch.rand(1, 1, 28, 28) # 随机代入数据到x out = layer.forward(x) # 进行一次卷积的前向运算 print(out.size()) # 输出结果的
点击 第11讲-NLP中的卷积神经网络 查看的课件注释与带学解读。...本篇笔记对应斯坦福CS224n自然语言处理专项课程的知识板块:NLP中的卷积神经网络。主要讲解卷积神经网络的结构,及其在NLP场景下的使用方式,一些模块和可调结构。...笔记核心词 卷积神经网络 / CNN 卷积层 池化层 多卷积核 多通道 / Multiple-Channels 卷积核 N-gram filter k-max pooling 文本分类 1.NLP中的卷积神经网络...[2D情况下的卷积] 这里使用 ShowMeAI 深度学习教程 | 卷积神经网络解读 文章中的一个动态计算过程: [卷积运算示例] 1.3 卷积层讲解 [单层卷积:一步] 考虑单词向量 x_{i} \in...它们最初是一样的(GloVe 或者其他初始化)。这两个集合同时作为神经网络的输入。因此,初始化的词向量在神经网络的训练中始终起着重要的作用。在测试中给出看不见的单词可以提高正确理解的几率。
前言 自2012年Alex Krizhevsky利用深度卷积神经网络(CNN)(AlexNet [1])取得ImageNet比赛冠军起,CNN在计算机视觉方面的应用引起了大家广泛地讨论与研究...本文主要就模型发展中的shortcut展开讨论。欢迎大家多多批评指正。...相邻层之间的关系如下, 001.png 其中H表示网络中的变换。...并且实际中,由于shortcut只跨越单层没有优势,ResNet中是跨越了2层或3层,如图8所示。...总结 为了解决深度模型中的梯度发散问题,很多技术方法被提了出来,shortcut是其中一种非常有效的方法。
Python中的类型检查 Python是一门强类型语言,每个变量在使用前都必须声明其变量类型。...但是这种方式不能检查变量的类型,如果试图将其他类型的值赋给该变量,也不会报错。...比如: ```python num = 1 print(num) 1 试图将字符串赋给整型变量 num = 'a' print(num) a ``` 如果我们想检查变量的类型,可以使用 type(...```python num = 1 print(type(num)) <class 'int' ``` 如果我们想要检查变量的类型是否为指定类型,可以使用 isinstance() 函数。...```python num = 1 检查变量的类型是否为整型 print(isinstance(num, int)) True 检查变量的类型是否为字符串 print(isinstance(num, str
本文将详细介绍深度学习中必备的算法,包括神经网络、卷积神经网络、循环神经网络等。神经网络神经网络是深度学习的核心算法之一,它是一种模仿人脑神经系统的算法。...卷积神经网络卷积神经网络是一种在图像处理中非常流行的神经网络。与普通神经网络不同,卷积神经网络可以利用图像中的空间结构,从而更好地处理图像数据。图片卷积神经网络的核心是卷积操作。...卷积操作是一种特殊的线性操作,它在一个小区域内计算输入数据的加权和,并将其输出到下一层。卷积操作可以使用不同的卷积核来提取不同的特征。在卷积神经网络中,通常使用池化操作来降低特征图的大小。...与卷积神经网络不同,循环神经网络可以利用序列数据中的时间结构,从而更好地处理序列数据。图片循环神经网络的核心是循环单元。循环单元可以接收输入和上一个时间步的输出,并计算下一个时间步的输出。...例如,在语音识别中,可以使用循环神经网络来建模语音信号和文本之间的映射关系,并预测文本。结论深度学习必备算法是深度学习的核心,包括神经网络、卷积神经网络、循环神经网络等。
领取专属 10元无门槛券
手把手带您无忧上云