首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python中的随机最优控制问题

是指在随机环境下,通过优化算法来寻找最优控制策略的问题。这类问题通常涉及到决策过程、随机过程和优化理论等领域。

随机最优控制问题的分类:

  1. 马尔可夫决策过程(Markov Decision Process,MDP):在离散时间和状态空间中,通过选择最优策略来最大化长期累积奖励的问题。
  2. 部分可观测马尔可夫决策过程(Partially Observable Markov Decision Process,POMDP):在存在不完全观测的情况下,通过选择最优策略来最大化长期累积奖励的问题。
  3. 最优停时问题(Optimal Stopping Problem):在连续时间下,通过选择最优停时点来最大化累积奖励的问题。

随机最优控制问题的优势:

  1. 能够应对复杂的随机环境和不确定性,提供更加鲁棒和可靠的控制策略。
  2. 能够在长期累积奖励的基础上进行优化,使系统性能得到最大化。

随机最优控制问题的应用场景:

  1. 金融领域:股票交易、期权定价等。
  2. 能源管理:电力系统调度、风电场运营等。
  3. 智能交通:交通信号控制、路径规划等。
  4. 机器人控制:自主导航、任务执行等。

腾讯云相关产品和产品介绍链接地址: 腾讯云提供了一系列与云计算相关的产品和服务,以下是其中几个与随机最优控制问题相关的产品:

  1. 云服务器(Elastic Cloud Server,ECS):提供灵活可扩展的云服务器实例,可用于部署和运行控制算法。 产品介绍链接:https://cloud.tencent.com/product/cvm
  2. 人工智能平台(AI Platform):提供了丰富的人工智能算法和工具,可用于开发和优化控制策略。 产品介绍链接:https://cloud.tencent.com/product/ai
  3. 数据库服务(TencentDB):提供高性能、可扩展的数据库服务,可用于存储和管理相关数据。 产品介绍链接:https://cloud.tencent.com/product/cdb

请注意,以上仅为腾讯云的部分产品示例,实际应用中还需根据具体需求选择适合的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 动作过程中进行反馈校正的控制策略

    令人怀疑的是,动物是否有完美的肢体逆模型(例如,要到达空间中的特定位置,每个关节必须进行什么样的肌肉收缩)。然而,在机器人控制中,将手臂的末端执行器移动到目标位置或沿着目标轨迹移动需要精确的正向和反向模型。在这里,我们表明,通过从交互中学习转换(向前)模型,我们可以使用它来驱动分期偿还策略的学习。因此,我们重新考虑了与深度主动推理框架相关的策略优化,并描述了一种模块化神经网络架构,该架构同时从预测误差和随机策略中学习系统动态,该随机策略生成合适的连续控制命令以到达期望的参考位置。我们通过将该模型与线性二次型调节器的基线进行比较来评估该模型,并总结了向类人运动控制迈进的额外步骤。

    03

    一个框架整合大脑理论 4.9 主动推理:快速计算实现有意义的行为

    尽管被认为在神经生物学上是合理的,但主动推理在用于模拟复杂环境中的智能行为时面临困难,这是由于它的计算成本和为主体指定合适的目标分布的困难。本文介绍了两种协同工作来解决这些限制的解决方案。首先,我们提出了一种新的有限时间范围的规划算法,具有非常低的计算复杂度。其次,受控制理论文献中Z-learning的启发,我们简化了为新的和现有的主动推理规划方案设置适当目标分布的过程。我们的第一种方法利用动态规划算法,以其计算效率而闻名,通过贝尔曼最优性原则最小化规划中使用的成本函数。因此,我们的算法以相反的时间顺序粗略地评估了动作的期望自由能。这将计算效率提高了几个数量级,并允许精确的模型学习和规划,即使在不确定的条件下。我们的方法简化了规划过程,即使只指定代理的最终目标状态,也能显示有意义的行为。与定义时间通知的目标分布的更复杂的任务相比,所提出的解决方案使得从目标状态定义目标分布变得简单。这些方法的有效性通过在标准网格世界任务中的模拟进行了测试和演示。这些进步为各种应用创造了新的机会。

    01

    ICLR 2019论文解读:深度学习应用于复杂系统控制

    20 世纪,控制论、系统论、信息论,对工业产生了颠覆性的影响。继 2011 年深度学习在物体检测上超越传统方法以来,深度学习在识别传感(包含语音识别、物体识别),自然语言处理领域里产生了颠覆性的影响。最近在信息论里,深度学习也产生了重要影响。使用深度学习可以对不同形式编码的信息进行自动解码。如今,深度学习再次影响控制论,传统控制论往往是模型驱动算法,需要设计复杂的模型和控制方案,而以数据驱动为核心的深度学习用作控制领域的春天即将到来,这将推动数十万亿的工业、服务业的进一步升级。通过深度学习控制,可以让机器人,能源,交通等行业效率显著提升。例如,使用深度学习进行智能楼宇控制,可以节约大楼 20% 的能耗,传统的控制需要多名专家 2 年的时间建立一个楼宇模型,深度学习可以利用楼宇历史数据在一天内得到超越传统方法的模型;在机器人控制和强化学习领域里,相比传统控制方法,本文提出的方法可以节约 80% 以上的运算时间并且提升 10% 以上的控制准确度。

    05

    2019腾讯犀牛鸟精英人才培养计划课题介绍(一)——机器人相关技术研究

    “ 精英人才培养计划是一项校企联合人才培养项目,入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养。培养期间,学生将获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将引进沟通技巧、商业分析、创新思维等定制课程,定期举办线上线下交流活动,全面提升学生综合素质。入选学生还将获得线上实名社群平台“十分精英圈”的在线访问权限,结识志同道合的科研伙伴,获取业界信息及资源。 ” 今年共有10大方向 81个子课题供大家选择 总有一

    01

    27次训练即可解决小车双摆的强化学习算法

    动力系统的有效控制设计传统上依赖于高水平的系统理解,通常用精确的物理模型来表达。与此相反,强化学习采用数据驱动的方法,通过与底层系统交互来构建最优控制策略。为了尽可能降低真实世界系统的磨损,学习过程应该很短。在我们的研究中,我们使用最先进的强化学习方法PILCO设计了一种反馈控制策略,用于小车上双摆的摆动,在测试台上的测试迭代非常少。PILCO代表“学习控制的概率推理”,学习只需要很少的专家知识。为了实现小车上的双摆摆动到其上不稳定平衡位置,我们在PILCO中引入了额外的状态约束,从而可以考虑有限的小车距离。由于这些措施,我们第一次能够在真正的测试台上学习摆起,并且仅用了27次学习迭代。

    02

    系统比较RL与AIF

    主动推理是一种建模生物和人工智能代理行为的概率框架,源于最小化自由能的原则。近年来,该框架已成功应用于多种旨在最大化奖励的情境中,提供了与替代方法相媲美甚至有时更好的性能。在本文中,我们通过展示主动推理代理如何以及何时执行最大化奖励的最优操作,澄清了奖励最大化与主动推理之间的联系。确切地说,我们展示了在何种条件下主动推理产生贝尔曼方程的最优解,该方程是模型驱动的强化学习和控制的几种方法的基础。在部分观察到的马尔可夫决策过程中,标准的主动推理方案可以产生规划时域为1时的贝尔曼最优操作,但不能超越。相反,最近开发的递归主动推理方案(精细推理)可以在任何有限的时间范围内产生贝尔曼最优操作。我们通过讨论主动推理与强化学习之间更广泛的关系,补充了这一分析。

    01

    机器人运动规划方法综述

    随着应用场景的日益复杂,机器人对旨在生成无碰撞路径(轨迹)的自主运动规划技术的需求也变得更加迫切。虽然目前已产生了大量适应于不同场景的规划算法,但如何妥善地对现有成果进行归类,并分析不同方法间的优劣异同仍是需要深入思考的问题。以此为切入点,首先,阐释运动规划的基本内涵及经典算法的关键步骤;其次,针对实时性与解路径(轨迹)品质间的矛盾,以是否考虑微分约束为标准,有层次地总结了现有的算法加速策略;最后,面向不确定性(即传感器不确定性、未来状态不确定性和环境不确定性)下的规划和智能规划提出的新需求,对运动规划领域的最新成果和发展方向进行了评述,以期为后续研究提供有益的参考。

    00

    揭秘大模型背后的机理,清华49页长文全方位分析参数高效微调方案Delta Tuning

    机器之心专栏 机器之心编辑部 本文中,包括刘知远、唐杰、孙茂松等在内来自清华大学的研究者对大模型的参数高效微调进行了全方位的理论和实验分析。 预训练语言模型 (PLM) 已经毫无疑问地成为各种 NLP 任务的基础架构,而且在 PLM 的发展中,呈现出了一个似乎不可逆的趋势:即模型的规模越来越大。更大的模型不仅会在已知任务上取得更好的效果,更展现出了完成更复杂的未知任务的潜力。然而,更大的模型也在应用上面临着更大的挑战,传统方法对超大规模的预训练模型进行全参数微调的过程会消耗大量的 GPU 计算资源与存储

    03
    领券