首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分析篇 | Pandas 时间序列 - 日期时间索引

    部字符串索引切片 vs. 精准匹配精确索引截断与花式索引日期/时间组件 DatetimeIndex 主要用作 Pandas 对象的索引。...DatetimeIndex 类为时间序列做了很多优化: 预计算了各种偏移量的日期范围,并在后台缓存,让后台生成后续日期范围的速度非常快(仅需抓取切片)。...参阅:重置索引 注意:Pandas 不强制排序日期索引,但如果日期没有排序,可能会引发可控范围之外的或不正确的操作。 DatetimeIndex 可以当作常规索引,支持选择、切片等方法。...正如上节所述,局部字符串依靠时间段的精度索引 DatetimeIndex,即时间间隔与索引精度相关。.../时间组件 以下日期/时间属性可以访问 Timestamp 或 DatetimeIndex。

    5.5K20

    element-ui 日期时间选择框picker-options如何禁用时间范围( 多个时间范围判断 )

    1. element-ui 算是我们在开发中用到最多的pc端 ui框架,今天公司正好有一个需要用到 date-picker 的日期插件 2....需求是这样的:   共有三个时间选择器,后一个时间选择器要结合前面一个时间的范围值,去做时间判断,禁用前面所选时间,保证不可有重复时间   结果是这样子:(根据前者的结束时间,来禁用当前时间选择范围)...不多说:直接上代码:( 官方给的文档,全靠自己去猜,心累 )    注意:在data(){} 定义当前对象,函数   注意:每次前者的时间选择器发生变化,需要把后面的时间选择器value = “ ”

    83230

    Python-时间及日期-03-字符串转时间

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 Python:3.6.0 这个系列讲讲...Python对时间及日期的操作 今天讲讲如何将字符串转化为日期格式 涉及模块:datetime Part 1:代码 import datetime print("示例1") str_time_1 =...Part 2:部分代码解读 datetime.datetime.strptime(str_time_1, '%Y-%m-%d %H:%M:%S') 其中str_time_1为拟转换为时间格式的字符串...%y/%d/%m %M:%H:%S') 其中str_time_2为拟转换为时间格式的字符串 其中%y/%d/%m %M:%H:%S为该字符串符合的时间格式 最终输出的时间格式为:%Y-%m-%d %H:...%M:%S datetime.datetime.strptime(str_time_3, '%Y-%m-%d %I:%M:%S %p') 其中str_time_3为拟转换为时间格式的字符串 其中%Y-%

    2.9K40

    《利用Python进行数据分析·第2版》第11章 时间序列11.1 日期和时间数据类型及工具11.2 时间序列基础11.3 日期的范围、频率以及移动11.4 时区处理时区本地化和转换11.5 时期及其

    11.1 日期和时间数据类型及工具 Python标准库包含用于日期(date)和时间(time)数据的数据类型,而且还有日历方面的功能。...11.2 时间序列基础 pandas最基本的时间序列类型就是以时间戳(通常以Python字符串或datatime对象表示)为索引的Series: In [39]: from datetime import...幸运的是,pandas有一整套标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围的工具。...转换为Period(及其反向过程) 通过使用to_period方法,可以将由时间戳索引的Series和DataFrame对象转换为以时期索引: In [188]: rng = pd.date_range...待聚合的数据不必拥有固定的频率,期望的频率会自动定义聚合的面元边界,这些面元用于将时间序列拆分为多个片段。例如,要转换到月度频率('M'或'BM'),数据需要被划分到多个单月时间段中。

    6.6K60

    pandas时间序列常用方法简介

    (str):时间提取字符串 其中,pd.to_datetime可接受单个或多个日期数值,具体类型包括数值型、字符串、数组或pd.series等序列,其中字符串日期格式几乎包含了所有可能的组成形式,例如...举例如下: 1.首先创建数据结构如下,其中初始dataframe索引是时间序列,两列数据分别为数值型和字符串型 ? 2.运用to_datetime将B列字符串格式转换为时间序列 ?...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...当然,虽然同样是执行的模糊匹配,但对于时间序列和字符串序列的匹配策略还是略有不同:时间序列执行的模糊匹配是"截断式",即只要当前匹配,则进行筛选保留;而字符串序列执行的模糊匹配是"比较式",也就是说在执行范围查询时实际上是将各索引逐一与查询范围进行比较字符串大小...这里补充一个将时间序列索引转化为字符串格式的普通索引后的模糊匹配例子,可自行体会下二者的区别: ?

    5.8K10

    时间序列 | 从开始到结束日期自增扩充数据

    item_df1.copy() # 创建datetime.time()格式的'01:00:00' >>> parse('01:00:00').time() datetime.time(1, 0) # 将原来的时间更换为新的时间...构建时间序列索引表 从医嘱开始日期到停止日期创建pd.date_range() 索引,以医嘱开始时间等于'01:00:00' 为内容创建DataFrame,并重置索引并重命名,还原医嘱开始当日的开始时间..., item_df2]).reset_index(drop=True) # 构建时间序列,将起始时间转换为 DatetimeIndex(['2019-08-05', '2019-08-27'],...,其不同之处为保留医嘱开始日期,将第二个开始日期替换为停止日期,以便后面转换为pd.date_range()日期范围。...构建时间序列 >>> # DataFrame的轴索引或列的日期转换为DatetimeIndex() >>> pd.to_datetime(item_df.医嘱开始日期.values) DatetimeIndex

    3K20

    NumPy 数组切片及数据类型介绍

    它类似于 Python 中的列表切片,但支持多维数组。一维数组切片要从一维数组中提取子集,可以使用方括号 [] 并指定切片。切片由起始索引、结束索引和可选步长组成,用冒号 : 分隔。...: 浮点数(float)c: 复数浮点数(complex float)m: 时间差(timedelta)M: 日期时间(datetime)O: 对象(object)S: 字符串(string)U: Unicode...nparr = np.array([1, 2, 3, 4, 5], dtype='float64')print(arr)print(arr.dtype)输出:[1. 2. 3. 4. 5.]float64转换数组的数据类型我们可以使用...c复数浮点数时间差m时间间隔日期时间M日期和时间对象OPython 对象字符串S固定长度字符串Unicode 字符串U可变长度 Unicode 字符串可变长度字节V用于其他类型的固定内存块练习创建以下...一个包含 10 个日期时间对象的数组。在评论中分享您的代码和输出。

    16010

    pandas

    在Python pandas中,从0开始行列索引 3.pandas 时间序列之pd.date_range() pd.date_range(python start=None,#开始时间...end=None,#截止时间 periods=None,#总长度 freq=None,#时间间隔 tz=None,#时区 normalize=False,#是否标准化到midnight...原因: writer.save()接口已经私有化,close()里面有save()会自动调用,将writer.save()替换为writer.close()即可 更细致的操作: 可以添加更多的参数,比如...列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转置 注意 转置不会影响原来的数据,所以如果想保存转置后的数据,请将值赋给一个变量再保存。

    13010

    Pandas的datetime数据类型

    ,但通过info查看加载后数据为object类型 某些场景下, (比如从csv文件中加载进来的数据), 日期时间的数据会被加载成object类型, 此时需要手动的把这个字段转换成日期时间类型 可以通过...TSLA.csv',parse_dates=[0]) tesla.info() tesla.loc[(tesla.Date.dt.year==2015) & (tesla.Date.dt.month == 8)] 将索引设为...比如在Ebola数据集中,日期并没有规律 ebola.iloc[:,:5] 从上面的数据中可以看到,缺少2015年1月1日,2014年3月23日,如果想让日期连续,可以创建一个日期范围来为数据集重建索引...,可以将时间索引排序,排序之后再选取效率更高 crime_sort = crime.sort_index() %timeit crime.loc['2015-3-4':'2016-1-1’] %timeit...时间序列类型的数据可以作为行索引,对应的数据类型是DatetimeIndex类型 datetime64类型可以做差,返回的是Timedelta类型

    14910
    领券