首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python学到什么程度可以面试工作(解答)

Python是一门语法简洁优美,功能强大无比,应用领域非常广泛,具有强大完备的第三方库的一门强类型的动态,可移植,可扩展,可嵌入的解释型编程语言。...强类型语言、弱类型语言的区别: 如果语言经常隐式地转换变量的类型,那这个语言就是弱类型语言,如果很少会这样做,那就是强类型语言。...Python很少会隐式地转换变量的类型,所以Python是强类型的语言。 强类型语言和弱类型原因其判断的根本是是否会隐式进行语言类型转变。...其中Python是动态语言,是强类型定义语言,是类型安全的语言,Java是静态语言,是强类型定义语言,也是类型安全的语言;弱类型语言包括:VB,PHP,JavaScript等语言。...int/long:Python3里,只有一种整数类型int,大多数情况下,它很像Python2里的长整型。Python2有为非浮点数准备的int和long类型。

64910

机器学习测试笔记(2)——Pandas

Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...这些功能主要是为了解决其它编程语言、科研环境的痛点。处理数据一般分为几个阶段:数据整理与清洗、数据分析与建模、数据可视化与制表,Pandas 是处理数据的理想工具。...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态系统的重要组成部分。 Pandas 已广泛应用于金融领域。

1.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark SQL实战(04)-API编程之DataFrame

    Spark的DataFrame是基于RDD(弹性分布式数据集)的一种高级抽象,类似关系型数据库的表格。...Spark DataFrame可看作带有模式(Schema)的RDD,而Schema则是由结构化数据类型(如字符串、整型、浮点型等)和字段名组成。...而R语言则可能会受限于单机内存和计算能力。 熟练程度:如果你或你的团队已经很熟悉Python,那么使用PySpark也许更好一些,因为你们不需要再去学习新的编程语言。...4 深入理解 Dataset是一个分布式数据集,提供RDD强类型和使用强大的lambda函数的能力,并结合了Spark SQL优化的执行引擎。...由于Python是一种动态语言,许多Dataset API的优点已经自然地可用,例如可以通过名称访问行的字段。R语言也有类似的特点。

    4.2K20

    Stata与Python等效操作与调用

    常规的数据整理包括变量增、删和改、重命名和排序等操作。处理过程中,针对数值型和字符型不同的数据类型,有不同的处理方法。 数值型变量主要是简单的计算,生成新的变量。...np.isnan()函数接受一个数组数组(DataFrame 是数组的一种特殊类型)并为每个元素返回 True 或 False 。...另一个重要的区别是 np.nan 是浮点数据类型,因此 DataFrame 的任何列包含缺失数字的将是浮点型的。如果一列整型数据改变了,即使只有一行 np.nan ,整列将被转换为浮点型。...1.13.2 浮点数 在 Stata 中,小数和任何值都不相等,比如 3.0==3 是 False 。而在 Python 会返回 True 。 2....但要注意,添加的路径只是临时的添加到了 sys.path,这意味着只有执行脚本的时候才会生效。在脚本运行完毕后,添加的路径会从列表中删除。

    10K51

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    Dataframe对象的内部表示 在底层,pandas会按照数据类型将列分组形成数据块(blocks)。...对于包含数值型数据(比如整型和浮点型)的数据块,pandas会合并这些列,并把它们存储为一个Numpy数组(ndarray)。Numpy数组是在C数组的基础上创建的,其值在内存中是连续存储的。...这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...选对比数值与字符的储存 object类型用来表示用到了Python字符串对象的值,有一部分原因是Numpy缺少对缺失字符串值的支持。...因为Python是一种高层、解析型语言,它没有提供很好的对内存中数据如何存储的细粒度控制。 这一限制导致了字符串以一种碎片化方式进行存储,消耗更多的内存,并且访问速度低下。

    8.7K50

    【Python】04、python基础数

    变量命名规则 只能包含字母、数字和下划线,且不能以数字开头         区分字母大小写,禁止使用保留字 python强类型动态语言: 强类型语言:指不同类型之间的对象不能相互运算 动态语言:...       python2中区分有int和long(长整型),python3中没有区分 float:浮点型,小数 float有长度限制,会溢出,会损失精度         python中没有double...: In [65]: abs(-123) Out[65]: 123 2、布尔类型 bool类型      布尔型其实是整型的子类型,布尔型数据只有两个取值:True和False,分别对应整型的1和0。...以下对象的布尔值都是False: None False(布尔型) 0(整型0) 0.0(浮点型0) 0.0+0.0j(复数0) ''(空字符串) [](空列表) ()(空元组) {}(空字典) 用户自定义的...在C语言中,%符号表示的是求余运算,在Python脚本中,%表示的是取模。

    99110

    Pandas 概览

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...大小可变与数据复制 Pandas 所有数据结构的值都是可变的,但数据结构的大小并非都是可变的,比如,Series 的长度不可改变,但 DataFrame 里就可以插入列。

    1.4K10

    数据分析篇 | Pandas 概览

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...大小可变与数据复制 Pandas 所有数据结构的值都是可变的,但数据结构的大小并非都是可变的,比如,Series 的长度不可改变,但 DataFrame 里就可以插入列。

    1.3K20

    数据分析 | 一文了解数据分析必须掌握的库-Pandas

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...大小可变与数据复制 Pandas 所有数据结构的值都是可变的,但数据结构的大小并非都是可变的,比如,Series 的长度不可改变,但 DataFrame 里就可以插入列。

    1.1K10

    Pandas 概览

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...Pandas 是 statsmodels 的依赖项,因此,Pandas 也是 Python 中统计计算生态圈的重要组成部分。 Pandas 已广泛应用于金融领域。...大小可变与数据复制 Pandas 所有数据结构的值都是可变的,但数据结构的大小并非都是可变的,比如,Series 的长度不可改变,但 DataFrame 里就可以插入列。

    1.2K00

    Python学习(一)---- Python基础必备

    编程语言主要从以下几个角度为进行分类,编译型和解释型、静态语言和动态语言、强类型定义语言和弱类型定义语言 编译型和解释型 编译型:有一个负责翻译的程序来对我们的源代码进行转换,生成相对应的可执行代码。...(2)静态类型语言:数据类型是在编译其间检查的,写程序时要声明所有变量的数据类型 强类型定义语言和弱类型定义语言 (1)强类型定义语言:强制数据类型定义的语言。...强类型定义语言在速度上可能略逊色于弱类型定义语言,但是强类型定义语言带来的严谨性能够有效的避免许多错误。 python是一门动态解释性的强类型定义语言。那这些基因使成就了Python的哪些优缺点呢?...Python的基本数据类型有5种: 整型(int), 浮点型(float), 字符型(string), 布尔型(bool),空值(None)....空值 空值是Python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

    1.3K40

    最全攻略:数据分析师必备Python编程基础知识

    布尔值 (Bool:True/False) Python布尔值一般通过逻辑判断产生,只有两个可能结果:True/False 整型、浮点型的“0”和复数0+0j也可以表示False,其余整型、浮点型、复数数值都被判断为...程序控制结构是编程语言的核心基础,Python的编程结构有3种,本节将详细地介绍这3种结构。...Python中,代码是逐行提交给解释器进行编译的,这里的一行称为逻辑行,实际代码也确实是一行,那么代码的物理行就只有一行,例如上述print代码,逻辑行和物理行是统一的。...DataFrame即是我们常见的二维数据表,包含多个变量(列)和样本(行),通常称为数据框;Series是一个一维结构的序列,会包含指定的索引信息,可以视作是DataFrame中的一列或一行,操作方法与...DataFrame十分相似;Panel是包含序列及截面信息的三维结构,通常称为面板数据,通过截取会获得对应的Series和DataFrame。

    4.6K21

    Pandas使用技巧:如何将运行内存占用降低90%!

    pandas 会自动为我们检测数据类型,发现其中有 83 列数据是数值,78 列是 object。object 是指有字符串或包含混合数据类型的情况。...dataframe 的内部表示 在 pandas 内部,同样数据类型的列会组织成同一个值块(blocks of values)。...对于表示整型数和浮点数这些数值的块,pandas 会将这些列组合起来,存储成 NumPy ndarray。NumPy ndarray 是围绕 C 语言的数组构建的,其中的值存储在内存的连续块中。...但这对我们原有 dataframe 的影响并不大,因为其中的整型列非常少。 让我们对其中的浮点型列进行一样的操作。...因为 Python 是一种高级的解释性语言,它对内存中存储的值没有细粒度的控制能力。 这一限制导致字符串的存储方式很碎片化,从而会消耗更多内存,而且访问速度也更慢。

    3.7K20

    图解pandas模块21个常用操作

    Pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...1、Series序列 系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。 ?...5、序列的聚合统计 Series有很多的聚会函数,可以方便的统计最大值、求和、平均值等 ? 6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。...19、数据合并 两个DataFrame的合并,pandas会自动按照索引对齐,可以指定两个DataFrame的对齐方式,如内连接外连接等,也可以指定对齐的索引列。 ?

    9K22

    2021年大数据Spark(二十四):SparkSQL数据抽象

    新的DataFrame AP不仅可以大幅度降低普通开发者的学习门槛,同时还支持Scala、Java与Python三种语言。...(以列(列名,列类型,列值)的形式构成的分布式的数据集,按照列赋予不同的名称) DataFrame有如下特性: 1)、分布式的数据集,并且以列的方式组合的,相当于具有schema的RDD; 2)、相当于关系型数据库中的表...与RDD相比:保存了更多的描述信息,概念上等同于关系型数据库中的二维表; 与DataFrame相比:保存了类型信息,是强类型的,提供了编译时类型检查,调用Dataset的方法先会生成逻辑计划,然后被Spark...编译时类型安全,但是无论是集群间的通信,还是IO操作都需要对对象的结构和数据进行序列化和反序列化,还存在较大的GC的性能开销,会频繁的创建和销毁对象。...DataFrame=Dataset[Row](Row表示表结构信息的类型),DataFrame只知道字段,但是不知道字段类型,而Dataset是强类型的,不仅仅知道字段,而且知道字段类型。

    1.2K10

    教程 | 简单实用的pandas技巧:如何将内存占用降低90%

    dataframe 的内部表示 在 pandas 内部,同样数据类型的列会组织成同一个值块(blocks of values)。...对于表示整型数和浮点数这些数值的块,pandas 会将这些列组合起来,存储成 NumPy ndarray。NumPy ndarray 是围绕 C 语言的数组构建的,其中的值存储在内存的连续块中。...但这对我们原有 dataframe 的影响并不大,因为其中的整型列非常少。 让我们对其中的浮点型列进行一样的操作。...我们可以看到浮点型列的数据类型从 float64 变成了 float32,让内存用量降低了 50%。...因为 Python 是一种高级的解释性语言,它对内存中存储的值没有细粒度的控制能力。 这一限制导致字符串的存储方式很碎片化,从而会消耗更多内存,而且访问速度也更慢。

    3.9K100

    Python常识

    一、强类型语言与弱类型语言 1、强类型语言 强类型语言是一种总是强制类型定义的语言,要求变量的使用要严格符合定义,所有变量都必须先定义后使用。...Python保留字 保留字是 Python 语言中一些已经被赋予特定意义的单词,不能用这些保留字作为标识符给变量、函数、类、模板以及其他对象命名。...变量的数据类型可以动态改变:同一个变量可以一会儿被赋值为整数值,一会儿被赋值为字符串 2、变量类型:数组型、字符型、字节串(bytes)、布尔型 1)、数值型包括整数型、浮点型和复数型 a.整数型包括正整数...b1.十进制形式:这种形式就是平常简单的浮点数,例如 5.12、512.0、0.512 b2.科学计数形式:例如 5.12e2或5.12E2(即 5.12×102) c.复数型 python可以支持复数...5)、各种数据类型相互转换--使用各种转换函数 ? 注意,在使用数据类型转换函数时,提供给它的数据必须是有意义的。

    87910

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    我们都知道,Numpy 是 Python 环境下的扩展程序库,支持大量的维度数组和矩阵运算;Pandas 也是 Python 环境下的数据操作和分析软件包,以及强大的数据分析库。...Numpy 是用于科学计算的 Python 语言扩展包,通常包含强大的 N 维数组对象、复杂函数、用于整合 C/C++和 Fortran 代码的工具以及有用的线性代数、傅里叶变换和随机数生成能力。...Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...Pandas 擅长处理的类型如下所示: 容易处理浮点数据和非浮点数据中的 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度的对象中插入或者是删除列; 显式数据可自动对齐...# create a dataframe dframe = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['India'

    6.3K10
    领券