首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【深度学习】Pytorch教程(八):PyTorch数据结构:2、张量的数学运算(6):高维张量:乘法、卷积(conv2d~四维张量;conv3d~五维张量)

在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。 2....一维卷积运算 【深度学习】Pytorch 系列教程(六):PyTorch数据结构:2、张量的数学运算(4):一维卷积及其数学原理(步长stride、零填充pad;宽卷积、窄卷积、等宽卷积;卷积运算与互相关运算...例如,两个张量的维度分别为(a,b,c)和(c,d),那么它们可以进行乘法操作。 批量乘法:如果两个张量的维度不完全匹配,但它们在最后一维上相符,那么可以进行批量乘法。...()) # 输出为 (2, 4, 32, 32) 通道匹配:卷积核的输入通道数必须与输入张量的通道数相同( 3=3 ),这样才能进行逐通道的卷积操作。...大小匹配:卷积核的大小必须小于或等于输入张量的大小( 3<32 ),否则无法在输入张量上进行卷积操作。

27810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch 深度学习入门

    Pytorch 是一个开源深度学习框架,带有 Python 和 C++ 接口。Pytorch 位于 torch 模块中。在 PyTorch 中,必须处理的数据以张量的形式输入。...PyTorch 加速了张量的科学计算,因为它具有各种内置功能。 向量是一维张量,矩阵是二维张量。...张量的两个基本属性是: 形状:指数组或矩阵的维数 Rank:指张量中存在的维数 代码: # 导入 torch import torch # 创建张量 t1=torch.tensor([1, 2, 3...以下是根据需要更改张量结构的三种常用方法: .reshape(a, b) :返回一个大小为 a,b 的新张量 .resize(a, b) :返回大小为 a,b 的相同张量 .transpose(a,...b) :返回在 a 和 b 维中转置的张量 一个 23 矩阵已被重新整形并转置为 32。

    1.2K20

    PyTorch 1.3 —新增功能?

    例如,到目前为止,在与计算机视觉相关的任务中,必须记住批处理的一般结构,如下所示-[N,C,H,W]。其中N是批处理大小,C是通道数,H和W分别是图像的高度和宽度。...当运算符应用于命名张量时(对于二进制运算符,任何一个或两个命名张量)将隐式检查某些维名称在运行时是否匹配。这为错误提供了额外的安全性。...这些规则与numpy或PyTorch中尺寸的广播规则非常相似。引用官方的PyTorch文档: 如果两个名称相等(字符串相等),或者至少一个为,则两个名称匹配None。...PyTorch利用了两个运营商- match和unify 为名称的传播。 match 与上面定义的运算符相同,它检查两个命名张量是否可以匹配。...unify是一个运算符,用于确定应将两个输入张量名称中的哪一个传播为结果张量。引用官方的PyTorch文档: unify(A, B)确定哪个名称A并将B其传播到输出。

    3.2K30

    【Python报错合集】Python元组tuple、张量tensor(IndexError、TypeError、RuntimeError……)~持续更新

    然而,为了进行广播,数组的形状必须满足一定的条件,例如在每个维度上的长度要么相等,要么其中一个数组的长度为1。...具体来说,张量a的大小为3,张量b的大小为4,在非单例维度0上大小不匹配。...b.解决方案   要解决这个问题,你需要检查你的代码,找出导致张量大小不匹配的原因,并确保两个张量在执行操作时具有相同的形状或大小。   ...0" 错误 # 需要调整张量的形状使其匹配 b_resized = b[:3] # 调整张量b的形状与张量a相匹配 c = a + b_resized # 现在可以成功执行相加操作 # 输出结果...print(c)   在这个示例中,我们通过使用切片操作将张量b的大小从4调整为3,使其与张量a的大小匹配,然后可以成功执行相加操作。

    19310

    CVPR 2020 | 一种频域深度学习

    然后,我们调整下一层的通道大小,以匹配频域中的通道数。如下图所示。通过这种方式,我们最小限度地调整现有的CNN模型,使其能够接受频域特征作为输入。...以ResNet-50为例,频域中的输入特征与第一个残差块连接,通道数调整为192,形成形状为56×56×192的输入特征。...这是从大小为448×448×3的输入图像经过DCT变换得到的,相比空间域中的224×224×3对应物,保留了四倍的信息,但输入特征大小增加了4倍。...然后,通过将张量3中的每个元素与两个可训练参数相乘,将张量3转换为图中形状为1×1×C×2的张量4。...实验结果表明,与基于RGB的Mask R-CNN基准相比,我们的方法在相等(DCT-48S)或更小(DCT-24S)的输入数据大小下表现更好。

    95441

    「深度学习一遍过」必修10:pytorch 框架的使用

    4.2 网络结构定义与前向传播 4.3 优化器定义 4.4 优化器使用流程 4.5 Tensor 的自动微分 autograd 5 pytorch数据与模型接口 5.1 数据接口 5.2 计算机视觉数据集与模型读取...x = torch.zeros(5, 3, dtype=torch.long) x.new_ones(5, 3, dtype=torch.double) 构造一个张量,为 ,从数据中推断数据类型...(3,5) 展为 维向量 x.view(-1) 增加维度 torch.unsqueeze(x,1) 压缩维度 torch.squeeze(x,1) 3 Tensor其他操作 拼接与拆分,...# 实际用于训练的图像大小:48*48,采用随机裁剪与缩放操作(此时Scale为冗余操作) transforms.RandomHorizontalFlip(), transforms.ToTensor...), # 实际用于测试的图像大小:48*48,采用中心裁剪操作 transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5

    58021

    「笔记」PyTorch预备知识与基础操作

    在代码中使用张量表示矩阵向量积,我们使用与点积相同的 dot 函数。当我们为矩阵 A 和向量 x 调用 np.dot(A, x)时,会执行矩阵向量积。...注意,A 的列维数(沿轴1的长度)必须与 x 的维数(其长度)相同。...如果你还记得小学时的欧几里得距离(想想毕达哥拉斯定理),那么非负性的概念和三角不等式可能会给你一些启发。事实上,欧几里得距离是一个范数:具体而言,它是 ? 范数。假设 ? -维向量 ?...如果 Tensor 是一个标量(即它包含一个元素的数据),则不需要为 backward() 指定任何参数,但是如果它有更多的元素,则需要指定一个 gradient 参数,该参数是形状匹配的张量。 ?...非标量变量的反向传播 当 y 不是标量时,向量y关于向量x的导数的最自然解释是一个矩阵。对于高阶和高维的 y 和 x,求导的结果可以是一个高阶张量。

    1.2K20

    有了这个工具,不执行代码就可以找PyTorch模型错误

    张量形状不匹配是深度神经网络机器学习过程中会出现的重要错误之一。由于神经网络训练成本较高且耗时,在执行代码之前运行静态分析,要比执行然后发现错误快上很多。...在线分析器:查找基于数值范围的形状不匹配和 API 参数的滥用。如果 PyTea 在分析代码时发现任何错误,它将停在该位置并将错误和违反约束通知用户; 离线分析器:生成的约束传递给 Z3 。...训练模型需要先定义网络结构,图 2 为一个简化的图像分类代码,取自官方的 PyTorch MNIST 分类示例: 在这里,上述代码首先定义一系列神经网络层,并使它们成为单一的神经网络模块。...除了取决于数据集大小的主训练循环之外,包括 epoch 数在内,训练代码中的迭代次数在大多数情况下被确定为常数。 在构建模型时,网络层之间输入、输出张量形状的不对应就是张量形状错误。...其实约束是 PyTorch 应用程序所需要的条件,以便在没有任何张量形状误差的情况下执行它。例如,一个矩阵乘法运算的两个操作数必须共享相同的维数。

    93340

    pytorch view(): argument size (position 1) must be tuple of ints, not Tensor

    特征张量 ​​features​​的形状是 ​​[1, 512, 7, 7]​​,其中​​1​​表示批处理大小,​​512​​为通道数,​​7x7​​为特征图的大小。...view()​​​是PyTorch中用于改变张量形状的函数,它返回一个新的张量,该张量与原始张量共享数据,但形状不同。通过改变张量的形状,我们可以重新组织张量中的元素,以适应不同的计算需求。...使用​​​view()​​函数可以进行以下操作:改变张量的维数和大小:我们可以通过​​view()​​函数增加或减少张量的维数,以及改变每个维度的大小。...下面是几个示例来介绍​​view()​​函数的使用:改变张量的维数和大小:pythonCopy codeimport torchx = torch.randn(2, 3, 4) # 创建一个形状为(2...展平成一维张量print(x.size()) # 输出:torch.Size([2, 3, 4])print(y.size()) # 输出:torch.Size([24])收缩和扩展维度:pythonCopy

    43920

    解决问题使用invalid argument 0: Sizes of tensors must match except in dimension 0. Got

    例如,假设我们有一个形状为(2, 3, 1)的张量tensor1,我们想要将其与形状为(1, 1, 5)的张量tensor2相乘:pythonCopy codeimport torchtensor1 =...例如,假设我们有一个形状为(2, 3, 1, 1)的张量,我们希望将其与形状为(2, 3)的张量相加:pythonCopy codeimport torchtensor1 = torch.randn(2...在PyTorch中,张量的尺寸通常以元组的形式表示。例如,一维张量的尺寸可以表示为(n,),其中n是张量在该维度上的大小。...二维张量的尺寸通常表示为(m, n),其中m表示张量在行方向上的大小,n表示在列方向上的大小。类似地,三维张量的尺寸可以表示为(p, m, n),其中p表示张量在第一个维度上的大小。...张量的尺寸对于许多深度学习任务非常重要,例如构建神经网络模型、调整输入数据的形状和大小、计算损失函数等。在神经网络中,各个层之间的输入和输出张量的尺寸必须匹配,以确保各层之间的连接正确。

    1.1K10

    PyTorch 的这些更新,你都知道吗?

    这次版本的主要更新一些性能的优化,包括权衡内存计算,提供 Windows 支持,24个基础分布,变量及数据类型,零维张量,张量变量合并,支持 CuDNN 7.1,加快分布式计算等,并修复部分重要 bug...▌目录 主要变化 张量/变量合并 零维张量 数据类型 版本迁移指南 新特性 张量 高级的索引功能 快速傅里叶变换 神经网络 权衡内存计算 瓶颈—用于识别代码热点的工具 torch中的分布 24个基础的概率分布...零维张量的一些操作 先前版本中,Tensor矢量(1维张量)的索引将返回一个Python数字,但一个Variable矢量的索引将返回一个大小为(1,)的矢量。...与 torch.*tensor 方法不同的是,你也可以通过这种方式(单个 python 数字在 torch.*tensor 方法中被视为大小)创建零维张量(也称为标量)。...模块的错误消息#5701 检查输入的维度与目标是否匹配,而不是与一些损失函数的元素数量匹配#5085 修复 torch.diag 操作在反向传播过程所返回方形渐变与非方形输入#4538 修复卷积类型不匹配的错误消息

    6K40

    【完美解决方案】RuntimeError: shape ‘‘ is invalid for input of size 10

    摘要 这个错误通常出现在处理张量时,当你尝试重塑(reshape)一个张量,而新形状与原始数据的总大小不匹配时发生。本文将详细分析错误发生的原因,并通过代码示例展示如何修复它。...然而,如果你尝试将某个张量重塑为一个与原始数据大小不兼容的形状,就会出现形如RuntimeError: shape '[2, 3]' is invalid for input of size 10的错误...因为张量重塑时,输入张量的总元素数必须等于输出张量的总元素数。在本例中,[2, 3]的总元素数是 2 * 3 = 6,而输入的大小是10,所以无法进行重塑。 1....张量形状规则 在进行张量操作时,了解以下规则至关重要: 总大小保持一致:重塑张量时,原始张量的总大小必须等于重塑后的张量大小。...# 将张量调整为与目标形状兼容的大小 compatible_tensor = tensor[:6].view(2, 3) print(compatible_tensor) 这里我们将原始大小为10的张量裁剪为

    34410

    PyTorch 重磅更新,不只是支持 Windows

    翻译 | 林椿眄 出品 | AI 科技大本营 这次版本的主要更新一些性能的优化,包括权衡内存计算,提供 Windows 支持,24个基础分布,变量及数据类型,零维张量,张量变量合并,支持 CuDNN 7.1...▌目录 主要变化 张量/变量合并 零维张量 数据类型 版本迁移指南 新特性 张量 高级的索引功能 快速傅里叶变换 神经网络 权衡内存计算 瓶颈—用于识别代码热点的工具 torch中的分布 24个基础的概率分布...零维张量的一些操作 先前版本中,Tensor矢量(1维张量)的索引将返回一个Python数字,但一个Variable矢量的索引将返回一个大小为(1,)的矢量。...与 torch.*tensor 方法不同的是,你也可以通过这种方式(单个 python 数字在 torch.*tensor 方法中被视为大小)创建零维张量(也称为标量)。...模块的错误消息#5701 检查输入的维度与目标是否匹配,而不是与一些损失函数的元素数量匹配#5085 修复 torch.diag 操作在反向传播过程所返回方形渐变与非方形输入#4538 修复卷积类型不匹配的错误消息

    1.7K20

    pytorch view(): argument size (position 1) must be tuple of ints, not Tensor

    我们需要将输入数据reshape成形状为​​(5000, 3, 32, 32)​​​的张量,其中​​5000​​​表示样本数量,​​3​​​表示图像的通道数(R、G、B三个通道),​​32​​表示图像的高度和宽度...然后,我们查看​​​train_data​​​的形状,发现形状为​​(50000, 32, 32, 3)​​​,其中50000表示样本数量,32表示图像高度和宽度,3表示通道数。...view()​​​函数是PyTorch中的一个张量方法,用于改变张量的形状。它的作用类似于Numpy中的​​reshape()​​​函数,可以用来调整张量的维度和大小,而不改变张量中的元素。 ​​​...然后,它使用这些信息对原始张量进行重新排列,生成一个新的张量。最后,它返回新的张量,将原始张量的数据复制到新的张量中(如果原始张量和新的张量的大小不匹配,会引发错误)。...需要注意的是,​​view()​​函数对张量进行的形状调整必须满足以下两个条件:调整后的张量的元素个数必须与原始张量的元素个数保持一致。

    30820

    PyTorch和Tensorflow版本更新点

    ,则其张量参数可以自动扩展为相同大小(不复制数据)。...•当从尺寸大小开始迭代时,从尾部维度开始,尺寸大小必须相等,其中一个为1,或其中一个不存在。 例如: ?...如果两个张量x、y是“可广播”的,则所得到的张量大小计算如下: •如果x和y的维数不相等,则将尺寸缩小到尺寸较小的张量的前端,以使其长度相等。...我们提供了一个单一的nn.EmbeddingBag,它能高效和快速地计算降维包,特别是对于可变长度序列。 •通过bce_with_logits数值稳定的二进制交叉熵损失。...使用(现已弃用)1维视图点分函数 PyTorch的先前版本允许某些点函数在不同形状的张量上执行,只要每个张量中的元素数量相等即可。 然后通过将每个张量视为一维来执行点操作。

    2.7K50

    节省大量时间的 Deep Learning 效率神器

    n _ neurons x d; W 的列必须与 X.T 的行匹配。...TensorSensor 还区分了 PyTorch 和 TensorFlow 引发的与张量相关的异常。...对于我们大多数人来说,仅仅通过张量维数和张量代码是不可能识别问题的。当然,默认的异常消息是有帮助的,但是我们中的大多数人仍然难以定位问题。...哎呀, Uxh 的列必须与 X.T的行匹配,Uxh_的维度翻转了,应该为: Uxh_ = torch.randn(nhidden, d) 现在,我们只在 with 代码块中使用我们自己直接指定的张量计算...在库函数中触发的异常会产生消息,消息标示了函数和任何张量参数的维数。 更多的功能比如不抛异常的情况下解释张量代码,可视化3D及更高维度张量,以及可视化子表达式张量形状等请浏览官方Blog。

    1.7K31

    Pytorch中的.backward()方法

    PyTorch的主要功能和特点之一就是backword函数,我知道一些基本的导数: Let, F = a*b Where, a = 10 b = 10∂F/∂a = b => ∂F/∂a = 20 ∂...这里F是非标量张量所以我们需要把梯度参数传递给和张量F维数相同的反向传播函数 ? 在上面的代码示例中,将梯度参数传递给backword函数并给出了所需的梯度值a和b。...如果我们考虑函数y它有n维的输入向量x它有m维的输出。然后计算包含以J表示的所有偏导数的雅可比矩阵: ? v为backword函数提供的外梯度。...当输出张量为标量时,则v_vector的大小为1,即torch.tensor([1.]),可以用值1代替。这样就得到了完整的雅可比矩阵,也就是J@v。...因此,F grad没有值,因为F张量不是叶子节点张量。为了积累非叶子节点的梯度,我们可以使用retain_grad方法如下: ?

    2.7K20

    01-PyTorch基础知识:安装PyTorch环境和张量Tensor简介

    有一个判断维度的小技巧: 您可以通过外部方括号 ( [ ) 的数量来判断 PyTorch 中张量的维数,并且只需要计算一侧。 vector 有1个方括号。...创建一个大小为3x4的随机张量: random_tensor = torch.rand(size=(3, 4)) random_tensor, random_tensor.dtype >>> (tensor...([224, 224, 3]), 3) 6.2 全0或全1张量 创建大小为3x4,数值都为0的张量: # Create a tensor of all zeros zeros = torch.zeros...([3]), torch.float32, device(type='cpu')) 除了形状问题(张量形状不匹配)之外,您在 PyTorch 中遇到的其他两个最常见问题是数据类型和设备问题。...torch.stack(tensors, dim=0) 沿着新的维度(dim)连接 tensors 的序列,所有 tensors 必须具有相同的大小。

    40910
    领券