首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基础知识 | R语言绘图基础之柱形图

图1 单数据系列柱形图 我们可以看到,图1的视觉效果并不是很好,如何使得图片的Y轴柱形图的高度从左到右是依次降低的呢?...一般来说,X轴的数据可以分为数值型、序列型和类别型,图1的X轴很明显属于类别型,根据城市类别进行分类的。Y轴变量通常都是数值型的。如X轴的数据类型属于类别型,一般需要对数据进行降序处理,再展示图表。...通常来说,用ggplot2绘图时,默认X轴类别按照字母顺序排列,比如图1 X轴顺序,按照城市首字母进行排序。...这主要是因为ggplot2是根据因子向量的水平按顺序展示的,而不是根据X轴的因子向量顺序排列,因子向量叫做factor,水平向量为level。...⚠️要实现X轴变量的降序,需要改变因子向量的水平顺序,一定要对表格或者因子向量排序后,再改变其水平顺序,才能使得X轴的类别顺序能够匹配Y轴变量的降序呈现。

1.9K30

关于南丁格尔图的“绘后感”

关于数据整理,原则是根据你的呈现目标整理&根据R语言函数对数据的要求整理。即既要满足想要呈现的内容又要满足代码对输入数据的要求。因此,要用计算机语言的思考方式,根据自己的目标整理数据。...不同的数据整理的方式会有不同。即使作相同的图,也没法完全照套相同图形的代码。即“一图一码”。 再说点其他跑题的内容。 不久前,我同学委托我帮助其画图,于是给了我如下的样图,让我照着画。...导入R前的数据整理 一、数据整理的原则 我自己总结的原则是,如果你画的是二维图,即只有X和Y轴的图,那么你的数据需要整理成核心只有两列的数据表。...),但是在这种情况下,对Species列去重后,由于每一类的重复数量不同,对应生成的新列会稍微复杂一点(也可以生成)。...必须与变量中的值对应,因子水平中没有的变量会被设置成缺失值(NA) 关于x轴的顺序。由于本次数据x轴本身也是分类变量,理论上也要先因子化,才能进行映射画图。

28860
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据可视化基本套路总结

    散点图 散点图用来表征两个(如果多个就分面,如上图)数值型变量间的关系,每个点的位置(即x轴和y轴坐标)映射着两个变量的值。当然对于三个数值型变量,也有三维散点图,不过用得不多。 气泡图 ?...值得一提的是,柱状图一般需要排序:如果分类型变量是有序的,按照它本身的顺序排列即可;如果分类型变量无序,那么则根据数值型变量的大小进行排序,使柱状图的高度单调变化。...柱状图一般是一个分类型变量不同类别间的比较,雷达图可以是多个数值不在同一个scale之下;更具体地说,柱状图一般是横向比较,雷达图既可以多个观测之间的纵向比较,也可以是一个观测在不同变量间的横向比较。...ggplot2 R最擅长的除了统计建模就是可视化了,而ggplot2是最流行、最强大的绘图包(应该没有之一)。对于静态图,只要你有足够的创意,ggplot2基本都可以通过其系统完备的画图语法实现。...而R中也有相关的包可以把ggplo2图形变成交互式,弥补了ggplot2本身不能交互的弱点。

    2.7K20

    如何通过R语言制作BBC风格的精美图片

    source:要显示在绘图左下角的源文本。 save_filepath:图形保存到的精确文件路径,包括末尾的.png扩展名。这确实取决于工作目录以及您是否在特定的R项目中。...它们的值可以在0到1之间,其中0左对齐,而1右对齐(或垂直对齐的底部和顶部对齐)。 根据数据添加标签 上面的向图表添加注释的方法使您可以精确地指定x和y坐标。...将左对齐标签添加到条形图 如果您想为条形图添加左对齐标签,只需根据数据设置x参数,而是直接使用数字值指定y参数。y的确切值将取决于数据范围。...按大小重新排序栏 默认情况下,R将按字母顺序显示数据,但按大小排列则很简单:只需将reorder()包装在要重新排列的x或y变量周围,然后指定要变量 重新排序。 例如。...image.png 修改柱状图柱子顺序 有时,您需要以不按字母顺序或按大小重新排序的方式对数据进行排序。

    13.1K10

    python数据可视化从入门到实战_大数据可视化概念

    常用图形 散点图 散点图 散点图用来表征两个(如果多个就分面,如上图)数值型变量间的关系,每个点的位置(即x轴和y轴坐标)映射着两个变量的值。当然对于三个数值型变量,也有三维散点图,不过用得不多。...值得一提的是,柱状图一般需要排序:如果分类型变量是有序的,按照它本身的顺序排列即可;如果分类型变量无序,那么则根据数值型变量的大小进行排序,使柱状图的高度单调变化。...柱状图一般是一个分类型变量不同类别间的比较,雷达图可以是多个数值不在同一个scale之下;更具体地说,柱状图一般是横向比较,雷达图既可以多个观测之间的纵向比较,也可以是一个观测在不同变量间的横向比较。...ggplot2 R最擅长的除了统计建模就是可视化了,而ggplot2是最流行、最强大的绘图包(应该没有之一)。对于静态图,只要你有足够的创意,ggplot2基本都可以通过其系统完备的画图语法实现。...而R中也有相关的包可以把ggplo2图形变成交互式,弥补了ggplot2本身不能交互的弱点。

    90230

    R语言入门系列之二

    ⑵特殊值 ①缺失值 在实际研究中,缺失值是难以避免的(不能将缺失值NA当做0来对待),可以使用函数is.na()来判断是否存在缺失值,该函数可以作用于向量、矩阵、数据框等对象,返回值为对应的逻辑值,如下所示...对于物理、化学变量而言,则完全不同,因为环境变量的值具有绝对性,例如温度1-2℃和21-22℃其差异是一样的。...环境变量由于量纲不同,在计算距离矩阵(欧氏距离)、根据特征根提取的主成分分析、比较系数的回归分析之前,均需要进行z-score标准化。...points():在以由图形绘制点图 lines():在已有图形绘制线图 plot.new():绘制新的图形,如若不设置参数,绘制一个新的空白图形 segments():根据起止点坐标,在已有图形添加直线...②箱型图 对于双变量其中一个为因子型变量或者分组变量,可以采用boxplot()箱型图来展示不同小组变量数据分布,如下所示: attach(mtcars) boxplot(mpg~cyl, xlab="

    3.9K30

    原创 | R的基础及进阶数据可视化功能包介绍

    接下来,我们就可以选择适当的图表类型(折线图、柱状图、点状图等),并根据数据坐标在坐标系中描绘数据。...R plot()也是如此。 在拥有坐标系的基础上,我们便可以描绘数据点,注意此处默认图表类型是点状图。...Figure 2 plot()描绘数据点(点状图) 根据R绘图原理,在已经拥有数据点的基础上,我们可以通过扩充了plot()语句来定义图表的其他元素。...与ggplot2相似,我们首先需要生成静态图表 在生成静态图表的基础上,动图及为多张静态图按一定规则堆在了一起。这里的规则便是我们提到的,按照声明的变量,比如:时间或类别顺序。...定义坐标轴随数据变化(即为图表可以根据数据值范围拉大或缩小) shadow_*():定义数据出现的方式(存在旧数据的历史记忆以影子的形态相继出现) enter_*()/exit_*():定义新数据出现和旧数据褪去的方式

    3.7K30

    (数据科学学习手札37)ggplot2基本绘图语法介绍

    x*y*z, data=data)   同样的,我们也可以对图中的散点设置颜色、大小、形状等参数,与plot不同的是,qplot中可以使用更加丰富的内容和更自由的赋参方法,我们可以传入类别型数据,qplot...  设置geom='bar'可以绘制条形图,当传入单个离散类别型数据时,可以自动绘制每个类别的频数统计条形图: qplot(color, data=data, geom='bar',...,,而是希望根据分组产生一页多图的形式,通过设置参数facets=sep_var~.可以实现,其中sep_var为分组依据的变量,例如下面我们以钻石颜色为分组依据: qplot(price,data=data...,下面我们就对ggplot2的语法规则进行探索: 3.1 ggplot2的绘图过程   我们先来看一下ggplot2的绘图过程: 仅根据上面的图,你心中一定很是疑惑,没关系,请你先短暂浏览上面这个过程...,当传入的属性值非正常输入时,譬如colour中输入的是data中某列类别型变量时,整个绘图过程不会有异常,因为ggplot2内部非常“宽容”地对类别型变量进行了标度转换,如下例: qplot(displ

    7K50

    如何试用 R 语言绘制散点图

    R语言绘制基因表达基因的“对称散点图 转录组分析中,计算了两组间差异表达的基因后,通常怎样表示?您可能第一时间想到可以使用火山图。...的确,火山图是使用频率最多的,在火山图中可以很轻松地根据基因在两组间的Fold Change值以及显著性p值,识别和判断差异表达基因概况。...提到散点图,常见的还有另一种展示差异表达基因的样式:横纵坐标轴可分别代表两组基因表达均值,这种风格可以更方便直观对比基因在两组中的差异状态。...例如,基因表达值数量级相差过大,取个对数转换;基因名称按是否为差异基因作个排序,避免后续作图时被不显著的基因点遮盖,即排序的目的是让这些显著基因的点都位于图的上方。...因此另一种思路是,颜色代表p值,这样就可以在图中获得一个渐变梯度。同样使用ggplot2的方法绘制,和上述过程相比仅在颜色指定上存在区别。

    1.4K20

    ggplot2--R语言宏基因组学统计分析(第四章)笔记

    面处理描述了应该使用哪些变量来分割数据,以及如何排列它们。刻面是一个强大的工具,可以研究不同的模式是否相同或不同于条件 ?...因为即使我们使用了许多缺省值,ggplot2的显式语法语法也相当冗长,这使得快速尝试不同的绘图变得困难。它还模仿plot()函数的语法,使ggplot2对于熟悉Base R图形的用户更容易使用。...对象p是类ggPlot的R S3对象,由数据和其他包含关于该图的信息的组件组成。我们可以使用Summary()函数访问信息的详细信息,以跟踪确切使用了哪些数据以及变量是如何映射的。...更改颜色的另一个重要应用是将不同颜色映射到源数据集中的类别变量的不同级别。例如,在微生物群落研究中,我们经常使用不同的颜色来呈现不同的实验组或条件。...我们可以看到,由于使用aes(col=Species),散点图中的点根据其所属物种呈现不同的颜色。

    5K20

    【直播回顾】轻松入门数据可视化

    数据可视化主要包括六大类:类别比较、数据关系、数据分布、局部整体、时间序列和地理空间,且不同类别间可能有共同重合的图表类型。其中,数据关系型图表包括变量间相关、变化、连接、层次等不同关系的图表。...类别比较型 类别比较型图表的数据一般包含数值型和类别型两种数据类型(见图1-8-2),比如在柱形图中,X轴为类别型数据,Y轴为数值型数据,采用位置+长度两种视觉元素。...该图表的变量一般都为数值型,当变量为1~3个时,可以采用散点图、气泡图、曲面图等;当变量多于3个时,可以采用高维数据可视化方法,如平行坐标系、矩阵散点图、径向坐标图、星形图和切尔若夫脸谱图等。...R中ggplot2包的geom_path()和geom_polygon()等函数,结合地理空间坐标系可以使用DataFrame格式的数据,绘制不同投影下的世界与国家地图。...另外,tmap包使用SpatialPointsDataFrame和SpatialPointsDataFrame格式的地理数据信息,可以绘制不同的地图。其优势在于可以绘制二维插值地图。

    1.8K40

    VlnPlot结果及常用参数浅析

    在ggplot2中,图层可以包括几何对象(如点、线、面等),统计变换,数据映射等。 比例(scales): 定义了图形的比例尺,例如x轴和y轴的取值范围和断点。...分面(facet): 表示图形是否使用了分面,分面可以将数据的子集并排或堆叠显示。 环境(environment): 存储了图形的计算环境,可能包含用于计算图形的变量和函数。...常用参数 除了导入结果数据的object以及需要绘制的features基因集,还可以修改颜色和点的大小和透明度: cols:用于绘制不同类别的小提琴图的颜色。...sort:根据被绘制属性的平均表达量对身份类别(x轴上)进行排序。你也可以传递'increasing'或'decreasing'来改变排序方向。...fill.by:根据'feature'或'ident'对小提琴图进行着色。 flip:翻转图表方向(身份类别在x轴上)。

    43810

    这些条形图的用法您都知道吗?

    在R语言的ggplot2包中,读者可以借助于geom_bar函数轻松地绘制条形图。对于条形图大家对其的印象是什么呢?又见过哪些种类的条形图呢?在本篇文章我将带着各位网友说道说道有关条形图的哪些品种。...ggplot2的语法讲解 ---- 如果读者对R语言比较熟悉,一定听过或使用过ggplot2的绘图体系了。...;如果设置为FALSE,则不显示任何图例;如果设置为TRUE,则显示图例; inherit.aes:bool类型的参数,绘图时是否延用ggplot函数中的数据和轴属性,默认为TRUE;根据作者的经验,如果...在实际应用中,对于单离散变量和单数值变量的条形图,右图会更加受欢迎,因为它更加直观(借助于排序可以迅速地发现柱子的最高、最低及差异;借助于数值标签可以明确地得知各离散水平下的具体值;借助于参考线可以比较哪些水平值高于平均水平...如上图所示,该图形的最大的好处是既可以实现数据的组内比较(如相同空气质量等级下不同风力的比较),也可以实现数据的组间比较(如相同风力下不同空气质量的比较)。

    5.6K10

    ggplot2包图形参数(坐标轴、分面、配色)整理

    R具有强大的统计计算功能和便捷的数据可视化系统。目前R主要支持四套图形系统:基础图形(base)、网格图形(grid)、lattice图形和ggplot2。...其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。...书中绝大多数的绘图案例都是以强大、灵活制图而著称的R包ggplot2实现的,充分展现了ggplot2生动、翔实的一面。...本文根据《R数据可视化手册》整理ggplot2包的图形参数(图形外观、注解、图例、坐标轴、分面、配色)。...对于点形来说,情况略微有些不同。大多数的点形,整个点的颜色是由colour控制的,而不是fi11。例外的情况是21-25号点,它们不仅有填充色,也有边界色。

    11.3K41

    R for data science (第一章)①Chapter1 使用ggplot2进行数据可视化

    mapping参数始终与aes()配对,aes()的x和y参数指定要映射到x和y轴的变量。 ggplot2在data参数中查找映射变量,在本例中为mpg。...您可以通过更改其aesthetic属性的值以不同方式显示一个点(如下所示)。由于我们已经使用 “value” 这个词来描述数据,让我们用“level” 这个词来描述aesthetic属性。...例如,您可以将点的颜色映射到类变量以显示每辆汽车的类。...在上面的例子中,我们将类映射到颜色,但我们可以以相同的方式将类映射到大小。在这种情况下,每个点的确切大小将揭示其类别隶属关系。...语法强调了对x和y的有用见解:点的x和y位置本身就是aesthetic,可以映射到变量以显示有关数据的信息的可视属性。 绘制美学图后,ggplot2会处理其余部分。

    2.8K20

    R可视乎|克利夫兰点图系列

    简介 在可靠性实验中,不同产品的测试失效时间可以通过克利夫兰点图进行可视化,今天就对该系列的图进行系统的介绍。主要参考张杰博士的《R语言数据可视化之美》[1],并结合我实际使用经验进行修改。...克利夫兰点图 克利夫兰点图(Cleveland's dot plot):类似棒棒糖图,只是没有连接的线条,重点强调数据的排序展示及互相之间的差距。...克利夫兰点图一般都横向展示,所以 Y 轴变量一般为类别型变量。 只需使用geom_point()即可绘制克利夫兰点图。...哑铃图主要用于: ①展示在同一时间段两个数据点的相对位置(增加或者减少); ②比较两个类别之间的数据值差别。 这里,我们的模拟数据就不大适合了,为了绘制该图,我将数据进行变化。...通过这个图可以看出,相同产品在不同厂房测试的数据,由于我的数据是模拟产生的,得到的结果没什么实际意义就不做解释了,主要是分享下如何使用克利夫兰点图进行绘制和拓展。

    90710

    还在用Matplotlib? 又一可视化神器Altair登场

    擅长不同编程语言的程序员会选择各自技术范畴内成熟、好用的工具包,比如 R 语言的开发者最常使用的是 ggplot2,但它不支持 Python;以前 Python 语言的开发者使用最多的是 matplotlib...ggplot2 是 R 的作图工具包,可以使用非常简单的语句实现非常复杂漂亮的效果。然而不幸的是,ggplot2 并不支持 Python。...决定什么数据应该作为x轴,什么作为y轴;图形中数据标记的大小和颜色。 Encoding. 指定数据变量类型。日期变量、量化变量还是类别变量?...如果变量类型指定为类别变量,那么 Altair 会为每个类别赋予不同的颜色。(例如 红色,黄色,蓝色) 补充:Vega-Lite 有两种类型的类别变量:名义变量和序数变量。...名义变量的集合中,各元素的排序阶数没有任何实际意义,例如大陆集合是欧洲,亚洲,非洲,美洲,大洋洲,他们的次序没有任何数值上的意义;序数变量的集合中,各元素的排序阶数是有实际意义的,例如亚马逊的评论可以是一星

    2.8K30

    如何通过Google来使用ggplot2可视化

    画图,画各种各样的图,画各种各样高逼格的图,画各种各样高逼格可以出版的图,是R语言自带的另一个光芒属性。如果你正在为如何画出各种好看的可视化图而苦恼,难道你不应该学习一点R语言么?...而展现知识点给读者最重要的环节就是可视化。 今时不同往日,我木有手下,得亲自上阵。...比如画多个分组变量(SNV和INDEL的het,hom)的条形图,并且标记每个变量的数值,还有修改图例,重新排序!...cut的不同选取不同形状的点,根据 color来画不同颜色的点,可以在 ggplot里面映射,也可以在几何对象里面映射 2.直方图 ggplot(small)+geom_histogram(aes...如果ggplot2只是有这39个内置图形函数那就太没意思了,每个映射都是可以细化调整的,包括X,Y轴,颜色,大小等具体的熟悉,只是需要时间来熟练使用!

    1.9K80

    数据视化的三大绘图系统概述:base、lattice和ggplot2

    R语言不仅提供了基本的可视化系统graphics包,简单的图+修饰,例如:plot、 hist(条形图)、 boxplot(箱图)、 points 、 lines、 text、title 、axis(坐标轴...绘图系统 ggplot2初识 更多下期详解 引言 不同类型变量常用的图表 连续数值变量 一个数值变量可以用:柱状图,点图,箱图 两个数值变量可以用:散点图 分类变量 一个分类变量的可视化:频率表,条形图...两个分类变量的可视化:关联表,相对频率表,分段条形图 一个分类变量一个数值变量: 分类箱图、条形图 1 Lattice绘图系统 特点:一次成图;适用于关系变量间的交互:在变量z的不同水平,变量y如何随变量...一种方法是使用cut()函数,另外可以使用lattice包中的函数将连续型变量转化为瓦块(shingle)数据结构,这样,连续型变量可以被分割为一系列(可能)重叠的数值范围。...Split/position 数值型向量,在一页上绘制多幅图形 Type 字符型向量,设定一个或多个散点图的绘图参数,(如p=点,l=线,r=回归,smooth=平滑曲线,g=格点) xlab/ylab

    4.4K30

    这50个ggplot2现成图表你居然没有从头到尾自己画一遍

    不过,我做不到,我只能做到的是可以绘制出几乎全部的图表的雏形,而且我个人觉得,把ggplot2学习到这个程度就足够了。...✦ 标度(Scales)是将数据的取值映射到图形空间,例如用颜色、大小或形状来表示不同的取值,展现标度的常见做法是绘制图例和坐标轴。...ggplot2 Scatterplot 这个教程侧重于8个单元: 展现单个连续变量:散点图,折线图,气泡图 进阶条形图:区域图 展现排序:棒棒糖图 展现连续变量的统计分布:条形图,箱线图,小提琴图,峰峦图...://mp.weixin.qq.com/s/_Q16zDZgCr3XoO0r3wqRkw 如果我说,全部学完,需要一年的时间,不知道你还是否愿意入坑呢?...不过,如果你是R语言都没有掌握好,那么可能需要先学习我给初学者的六步系统入门R语言,知识点路线图如下: 了解常量和变量概念 加减乘除等运算(计算器) 多种数据类型(数值,字符,逻辑,因子) 多种数据结构

    1.6K10
    领券